亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a low-cost, parameter-free, and pressure-robust Stokes solver based on the enriched Galerkin (EG) method with a discontinuous velocity enrichment function. The EG method employs the interior penalty discontinuous Galerkin (IPDG) formulation to weakly impose the continuity of the velocity function. However, the symmetric IPDG formulation, despite of its advantage of symmetry, requires a lot of computational effort to choose an optimal penalty parameter and to compute different trace terms. In order to reduce such effort, we replace the derivatives of the velocity function with its weak derivatives computed by the geometric data of elements. Therefore, our modified EG (mEG) method is a parameter-free numerical scheme which has reduced computational complexity as well as optimal rates of convergence. Moreover, we achieve pressure-robustness for the mEG method by employing a velocity reconstruction operator on the load vector on the right-hand side of the discrete system. The theoretical results are confirmed through numerical experiments with two- and three-dimensional examples.

相關內容

Eurographics是唯一在歐洲范圍內真正的專業計算機圖形協會。它匯集了來自世界各地的圖形專家,該協會支持其成員推進計算機圖形學以及多媒體,科學可視化和人機界面等相關領域的最新技術水平。通過其全球成員資格,EG與美國,日本和其他國家/地區的發展保持著密切聯系,從而促進了全球范圍內科學技術信息和技能的交流。 官網地址:

Randomized orthogonal projection methods (ROPMs) can be used to speed up the computation of Krylov subspace methods in various contexts. Through a theoretical and numerical investigation, we establish that these methods produce quasi-optimal approximations over the Krylov subspace. Our numerical experiments outline the convergence of ROPMs for all matrices in our test set, with occasional spikes, but overall with a convergence rate similar to that of standard OPMs.

We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.

We study continuous data assimilation (CDA) applied to projection and penalty methods for the Navier-Stokes (NS) equations. Penalty and projection methods are more efficient than consistent NS discretizations, however are less accurate due to modeling error (penalty) and splitting error (projection). We show analytically and numerically that with measurement data and properly chosen parameters, CDA can effectively remove these splitting and modeling errors and provide long time optimally accurate solutions.

The photogrammetric and reconstructive modeling of cultural heritage sites is mostly focused on visually perceivable aspects, but if their intended purpose is the performance of cultural acts with a sonic emphasis, it is important to consider the preservation of their acoustical behaviour to make them audible in an authentic way. This applies in particular to sacral and concert environments as popular objects for photogrammetric models, which contain geometrical and textural information that can be used to locate and classify acoustically relevant surface properties. With the advancing conversion or destruction of historical acoustical spaces, it becomes even more important to preserve their unique sonic characters, while three-dimensional auralizations become widely applicable. The proposed study presents the current state of a new methodological approach to acoustical modeling using photogrammetric data and introduces a parameterizable pipeline that will be accessible as an open-source software with a graphical user interface.

We present a novel fully implicit hybrid finite volume/finite element method for incompressible flows. Following previous works on semi-implicit hybrid FV/FE schemes, the incompressible Navier-Stokes equations are split into a pressure and a transport-diffusion subsystem. The first of them can be seen as a Poisson type problem and is thus solved efficiently using classical continuous Lagrange finite elements. On the other hand, finite volume methods are employed to solve the convective subsystem, in combination with Crouzeix-Raviart finite elements for the discretization of the viscous stress tensor. For some applications, the related CFL condition, even if depending only in the bulk velocity, may yield a severe time restriction in case explicit schemes are used. To overcome this issue an implicit approach is proposed. The system obtained from the implicit discretization of the transport-diffusion operator is solved using an inexact Newton-Krylov method, based either on the BiCStab or the GMRES algorithm. To improve the convergence properties of the linear solver a symmetric Gauss-Seidel (SGS) preconditioner is employed, together with a simple but efficient approach for the reordering of the grid elements that is compatible with MPI parallelization. Besides, considering the Ducros flux for the nonlinear convective terms we can prove that the discrete advection scheme is kinetic energy stable. The methodology is carefully assessed through a set of classical benchmarks for fluid mechanics. A last test shows the potential applicability of the method in the context of blood flow simulation in realistic vessel geometries.

Backward Stochastic Differential Equations (BSDEs) have been widely employed in various areas of social and natural sciences, such as the pricing and hedging of financial derivatives, stochastic optimal control problems, optimal stopping problems and gene expression. Most BSDEs cannot be solved analytically and thus numerical methods must be applied to approximate their solutions. There have been a variety of numerical methods proposed over the past few decades as well as many more currently being developed. For the most part, they exist in a complex and scattered manner with each requiring a variety of assumptions and conditions. The aim of the present work is thus to systematically survey various numerical methods for BSDEs, and in particular, compare and categorize them, for further developments and improvements. To achieve this goal, we focus primarily on the core features of each method based on an extensive collection of 333 references: the main assumptions, the numerical algorithm itself, key convergence properties and advantages and disadvantages, to provide an up-to-date coverage of numerical methods for BSDEs, with insightful summaries of each and a useful comparison and categorization.

In this paper, we study nonparametric estimation of instrumental variable (IV) regressions. Recently, many flexible machine learning methods have been developed for instrumental variable estimation. However, these methods have at least one of the following limitations: (1) restricting the IV regression to be uniquely identified; (2) only obtaining estimation error rates in terms of pseudometrics (\emph{e.g.,} projected norm) rather than valid metrics (\emph{e.g.,} $L_2$ norm); or (3) imposing the so-called closedness condition that requires a certain conditional expectation operator to be sufficiently smooth. In this paper, we present the first method and analysis that can avoid all three limitations, while still permitting general function approximation. Specifically, we propose a new penalized minimax estimator that can converge to a fixed IV solution even when there are multiple solutions, and we derive a strong $L_2$ error rate for our estimator under lax conditions. Notably, this guarantee only needs a widely-used source condition and realizability assumptions, but not the so-called closedness condition. We argue that the source condition and the closedness condition are inherently conflicting, so relaxing the latter significantly improves upon the existing literature that requires both conditions. Our estimator can achieve this improvement because it builds on a novel formulation of the IV estimation problem as a constrained optimization problem.

The study of uncertainty propagation is of fundamental importance in plasma physics simulations. To this end, in the present work we propose a novel stochastic Galerkin (sG) particle {method} for collisional kinetic models of plasmas under the effect of uncertainties. This class of methods is based on a generalized polynomial chaos (gPC) expansion of the particles' position and velocity. In details, we introduce a stochastic particle approximation for the Vlasov-Poisson system with a BGK term describing plasma collisions. A careful reformulation of such dynamics is needed to perform the sG projection and to obtain the corresponding system for the gPC coefficients. We show that the sG particle method preserves the main physical properties of the problem, such as conservations and positivity of the solution, while achieving spectral accuracy for smooth solutions in the random space. Furthermore, in the fluid limit the sG particle solver is designed to possess the asymptotic-preserving property necessary to obtain a sG particle scheme for the limiting Euler-Poisson system, thus avoiding the loss of hyperbolicity typical of conventional sG methods based on finite differences or finite volumes. We tested the schemes considering the classical Landau damping problem in the presence of both small and large initial uncertain perturbations, the two stream instability and the Sod shock tube problems under uncertainties. The results show that the proposed method is able to capture the correct behavior of the system in all test cases, even when the relaxation time scale is very small.

In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.

$L^1$ based optimization is widely used in image denoising, machine learning and related applications. One of the main features of such approach is that it naturally provide a sparse structure in the numerical solutions. In this paper, we study an $L^1$ based mixed DG method for second-order elliptic equations in the non-divergence form. The elliptic PDE in nondivergence form arises in the linearization of fully nonlinear PDEs. Due to the nature of the equations, classical finite element methods based on variational forms can not be employed directly. In this work, we propose a new optimization scheme coupling the classical DG framework with recently developed $L^1$ optimization technique. Convergence analysis in both energy norm and $L^{\infty}$ norm are obtained under weak regularity assumption. Such $L^1$ models are nondifferentiable and therefore invalidate traditional gradient methods. Therefore all existing gradient based solvers are no longer feasible under this setting. To overcome this difficulty, we characterize solutions of $L^1$ optimization as fixed-points of proximity equations and utilize matrix splitting technique to obtain a class of fixed-point proximity algorithms with convergence analysis. Various numerical examples are displayed to illustrate the numerical solution has sparse structure with careful choice of the bases of the finite dimensional spaces. Numerical examples in both smooth and nonsmooth settings are provided to validate the theoretical results.

北京阿比特科技有限公司