亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.

相關內容

Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.

We propose a non-intrusive, reduced-basis, and data-driven method for approximating both eigenvalues and eigenvectors in parametric eigenvalue problems. We generate the basis of the reduced space by applying the proper orthogonal decomposition (POD) approach on a collection of pre-computed, full-order snapshots at a chosen set of parameters. Then, we use Bayesian linear regression (a.k.a. Gaussian Process Regression) in the online phase to predict both eigenvalues and eigenvectors at new parameters. A split of the data generated in the offline phase into training and test data sets is utilized in the numerical experiments following standard practices in the field of supervised machine learning. Furthermore, we discuss the connection between Gaussian Process Regression and spline methods, and compare the performance of GPR method against linear and cubic spline methods. We show that GPR outperforms other methods for functions with a certain regularity. To this end, we discuss various different covariance functions which influence the performance of GPR. The proposed method is shown to be accurate and efficient for the approximation of multiple 1D and 2D affine and non-affine parameter-dependent eigenvalue problems that exhibit crossing of eigenvalues.

A block Markov chain is a Markov chain whose state space can be partitioned into a finite number of clusters such that the transition probabilities only depend on the clusters. Block Markov chains thus serve as a model for Markov chains with communities. This paper establishes limiting laws for the singular value distributions of the empirical transition matrix and empirical frequency matrix associated to a sample path of the block Markov chain whenever the length of the sample path is $\Theta(n^2)$ with $n$ the size of the state space. The proof approach is split into two parts. First, we introduce a class of symmetric random matrices with dependent entries called approximately uncorrelated random matrices with variance profile. We establish their limiting eigenvalue distributions by means of the moment method. Second, we develop a coupling argument to show that this general-purpose result applies to the singular value distributions associated with the block Markov chain.

Graph Laplacian based algorithms for data lying on a manifold have been proven effective for tasks such as dimensionality reduction, clustering, and denoising. In this work, we consider data sets whose data point not only lie on a manifold, but are also closed under the action of a continuous group. An example of such data set is volumes that line on a low dimensional manifold, where each volume may be rotated in three-dimensional space. We introduce the G-invariant graph Laplacian that generalizes the graph Laplacian by accounting for the action of the group on the data set. We show that like the standard graph Laplacian, the G-invariant graph Laplacian converges to the Laplace-Beltrami operator on the data manifold, but with a significantly improved convergence rate. Furthermore, we show that the eigenfunctions of the G-invariant graph Laplacian admit the form of tensor products between the group elements and eigenvectors of certain matrices, which can be computed efficiently using FFT-type algorithms. We demonstrate our construction and its advantages on the problem of filtering data on a noisy manifold closed under the action of the special unitary group SU(2).

In tug-of-war, two players compete by moving a counter along edges of a graph, each winning the right to move at a given turn according to the flip of a possibly biased coin. The game ends when the counter reaches the boundary, a fixed subset of the vertices, at which point one player pays the other an amount determined by the boundary vertex. Economists and mathematicians have independently studied tug-of-war for many years, focussing respectively on resource-allocation forms of the game, in which players iteratively spend precious budgets in an effort to influence the bias of the coins that determine the turn victors; and on PDE arising in fine mesh limits of the constant-bias game in a Euclidean setting. In this article, we offer a mathematical treatment of a class of tug-of-war games with allocated budgets: each player is initially given a fixed budget which she draws on throughout the game to offer a stake at the start of each turn, and her probability of winning the turn is the ratio of her stake and the sum of the two stakes. We consider the game played on a tree, with boundary being the set of leaves, and the payment function being the indicator of a single distinguished leaf. We find the game value and the essentially unique Nash equilibrium of a leisurely version of the game, in which the move at any given turn is cancelled with constant probability after stakes have been placed. We show that the ratio of the players' remaining budgets is maintained at its initial value $\lambda$; game value is a biased infinity harmonic function; and the proportion of remaining budget that players stake at a given turn is given in terms of the spatial gradient and the $\lambda$-derivative of game value. We also indicate examples in which the solution takes a different form in the non-leisurely game.

Congestion pricing has long been hailed as a means to mitigate traffic congestion; however, its practical adoption has been limited due to the resulting social inequity issue, e.g., low-income users are priced out off certain roads. This issue has spurred interest in the design of equitable mechanisms that aim to refund the collected toll revenues as lump-sum transfers to users. Although revenue refunding has been extensively studied for over three decades, there has been no thorough characterization of how such schemes can be designed to simultaneously achieve system efficiency and equity objectives. In this work, we bridge this gap through the study of \emph{congestion pricing and revenue refunding} (CPRR) schemes in non-atomic congestion games. We first develop CPRR schemes, which in comparison to the untolled case, simultaneously increase system efficiency without worsening wealth inequality, while being \emph{user-favorable}: irrespective of their initial wealth or values-of-time (which may differ across users), users would experience a lower travel cost after the implementation of the proposed scheme. We then characterize the set of optimal user-favorable CPRR schemes that simultaneously maximize system efficiency and minimize wealth inequality. Finally, we provide a concrete methodology for computing optimal CPRR schemes and also highlight additional equilibrium properties of these schemes under different models of user behavior. Overall, our work demonstrates that through appropriate refunding policies we can design user-favorable CPRR schemes that maximize system efficiency while reducing wealth inequality.

Balanced hypergraph partitioning is an NP-hard problem with many applications, e.g., optimizing communication in distributed data placement problems. The goal is to place all nodes across $k$ different blocks of bounded size, such that hyperedges span as few parts as possible. This problem is well-studied in sequential and distributed settings, but not in shared-memory. We close this gap by devising efficient and scalable shared-memory algorithms for all components employed in the best sequential solvers without compromises with regards to solution quality. This work presents the scalable and high-quality hypergraph partitioning framework Mt-KaHyPar. Its most important components are parallel improvement algorithms based on the FM algorithm and maximum flows, as well as a parallel clustering algorithm for coarsening - which are used in a multilevel scheme with $\log(n)$ levels. As additional components, we parallelize the $n$-level partitioning scheme, devise a deterministic version of our algorithm, and present optimizations for plain graphs. We evaluate our solver on more than 800 graphs and hypergraphs, and compare it with 25 different algorithms from the literature. Our fastest configuration outperforms almost all existing hypergraph partitioners with regards to both solution quality and running time. Our highest-quality configuration achieves the same solution quality as the best sequential partitioner KaHyPar, while being an order of magnitude faster with ten threads. Thus, two of our configurations occupy all fronts of the Pareto curve for hypergraph partitioning. Furthermore, our solvers exhibit good speedups, e.g., 29.6x in the geometric mean on 64 cores (deterministic), 22.3x ($\log(n)$-level), and 25.9x ($n$-level).

Higher order finite difference Weighted Essentially Non-Oscillatory (WENO) schemes have been constructed for conservation laws. For multidimensional problems, they offer high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of comparable accuracy. This makes them quite attractive for several science and engineering applications. But, to the best of our knowledge, such schemes have not been extended to non-linear hyperbolic systems with non-conservative products. In this paper, we perform such an extension which improves the domain of applicability of such schemes. The extension is carried out by writing the scheme in fluctuation form. We use the HLLI Riemann solver of Dumbser and Balsara (2016) as a building block for carrying out this extension. Because of the use of an HLL building block, the resulting scheme has a proper supersonic limit. The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme, thus expanding its domain of applicability. Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions, making it very easy for users to transition over to the present formulation.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

北京阿比特科技有限公司