We introduce a new convexified matching method for missing value imputation and individualized inference inspired by computational optimal transport. Our method integrates favorable features from mainstream imputation approaches: optimal matching, regression imputation, and synthetic control. We impute counterfactual outcomes based on convex combinations of observed outcomes, defined based on an optimal coupling between the treated and control data sets. The optimal coupling problem is considered a convex relaxation to the combinatorial optimal matching problem. We estimate granular-level individual treatment effects while maintaining a desirable aggregate-level summary by properly constraining the coupling. We construct transparent, individual confidence intervals for the estimated counterfactual outcomes. We devise fast iterative entropic-regularized algorithms to solve the optimal coupling problem that scales favorably when the number of units to match is large. Entropic regularization plays a crucial role in both inference and computation; it helps control the width of the individual confidence intervals and design fast optimization algorithms.
Feature extraction and selection at the presence of nonlinear dependencies among the data is a fundamental challenge in unsupervised learning. We propose using a Gram-Schmidt (GS) type orthogonalization process over function spaces to detect and map out such dependencies. Specifically, by applying the GS process over some family of functions, we construct a series of covariance matrices that can either be used to identify new large-variance directions, or to remove those dependencies from known directions. In the former case, we provide information-theoretic guarantees in terms of entropy reduction. In the latter, we provide precise conditions by which the chosen function family eliminates existing redundancy in the data. Each approach provides both a feature extraction and a feature selection algorithm. Our feature extraction methods are linear, and can be seen as natural generalization of principal component analysis (PCA). We provide experimental results for synthetic and real-world benchmark datasets which show superior performance over state-of-the-art (linear) feature extraction and selection algorithms. Surprisingly, our linear feature extraction algorithms are comparable and often outperform several important nonlinear feature extraction methods such as autoencoders, kernel PCA, and UMAP. Furthermore, one of our feature selection algorithms strictly generalizes a recent Fourier-based feature selection mechanism (Heidari et al., IEEE Transactions on Information Theory, 2022), yet at significantly reduced complexity.
Broadcast and consensus are most fundamental tasks in distributed computing. These tasks are particularly challenging in dynamic networks where communication across the network links may be unreliable, e.g., due to mobility or failures. Indeed, over the last years, researchers have derived several impossibility results and high time complexity lower bounds (i.e., linear in the number of nodes $n$) for these tasks, even for oblivious message adversaries where communication networks are rooted trees. However, such deterministic adversarial models may be overly conservative, as many processes in real-world settings are stochastic in nature rather than worst case. This paper initiates the study of broadcast and consensus on stochastic dynamic networks, introducing a randomized oblivious message adversary. Our model is reminiscent of the SI model in epidemics, however, revolving around trees (which renders the analysis harder due to the apparent lack of independence). In particular, we show that if information dissemination occurs along random rooted trees, broadcast and consensus complete fast with high probability, namely in logarithmic time. Our analysis proves the independence of a key variable, which enables a formal understanding of the dissemination process. More formally, for a network with $n$ nodes, we first consider the completely random case where in each round the communication network is chosen uniformly at random among rooted trees. We then introduce the notion of randomized oblivious message adversary, where in each round, an adversary can choose $k$ edges to appear in the communication network, and then a rooted tree is chosen uniformly at random among the set of all rooted trees that include these edges. We show that broadcast completes in $O(k+\log n)$ rounds, and that this it is also the case for consensus as long as $k \le 0.1n$.
A significant barrier preventing model-based methods from matching the high performance of reinforcement learning in dexterous manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated using complementarity models, multi-contact dynamics introduces combinatorial complexity and non-smoothness, complicating contact-rich planning and control. In this paper, we circumvent these challenges by introducing a novel, simplified multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as explicit time stepping, differentiability, automatic satisfaction of Coulomb friction law, and minimal hyperparameter tuning. We demonstrate the effectiveness and efficiency of the model for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across tasks, (II) high manipulation accuracy with an average reorientation error of 11{\deg} and position error of 7.8 mm, and (III) model predictive control running at 50-100 Hz for all tested dexterous manipulation tasks. These results are achieved with minimal hyperparameter tuning.
Direct preference optimization (DPO), a widely adopted offline preference optimization algorithm, aims to align large language models (LLMs) with human-desired behaviors using pairwise preference data. However, the winning response and the losing response within pairwise data are generated isolatedly, leading to weak correlations between them as well as suboptimal alignment performance. To address this issue, we propose an effective framework named BMC, for bridging and modeling correlations in pairwise data. Firstly, we increase the consistency and informativeness of the pairwise preference signals by targeted modifications, synthesizing a pseudo winning response through improving the losing response based on the winning response. Secondly, we identify that DPO alone is insufficient to model these correlations and capture nuanced variations. Therefore, we propose learning token-level correlations by dynamically leveraging the policy model's confidence during training. Comprehensive experiments on QA, math, and instruction-following tasks demonstrate the effectiveness of our approach, significantly surpassing competitive baselines, including DPO. Additionally, our in-depth quantitative analysis reveals the reasons behind our method's superior performance over DPO and showcases its versatility to other DPO variants.
Link prediction models can benefit from incorporating textual descriptions of entities and relations, enabling fully inductive learning and flexibility in dynamic graphs. We address the challenge of also capturing rich structured information about the local neighbourhood of entities and their relations, by introducing a Transformer-based approach that effectively integrates textual descriptions with graph structure, reducing the reliance on resource-intensive text encoders. Our experiments on three challenging datasets show that our Fast-and-Frugal Text-Graph (FnF-TG) Transformers achieve superior performance compared to the previous state-of-the-art methods, while maintaining efficiency and scalability.
We revisit parallel-innermost term rewriting as a model of parallel computation on inductive data structures and provide a corresponding notion of runtime complexity parametric in the size of the start term. We propose automatic techniques to derive both upper and lower bounds on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential complexity. Our approach to find lower bounds requires confluence of the parallel-innermost rewrite relation, thus we also provide effective sufficient criteria for proving confluence. The applicability and the precision of the method are demonstrated by the relatively light effort in extending the program analysis tool AProVE and by experiments on numerous benchmarks from the literature.
Ordinal regression is a fundamental problem within the field of computer vision, with customised well-trained models on specific tasks. While pre-trained vision-language models (VLMs) have exhibited impressive performance on various vision tasks, their potential for ordinal regression has received less exploration. In this study, we first investigate CLIP's potential for ordinal regression, from which we expect the model could generalise to different ordinal regression tasks and scenarios. Unfortunately, vanilla CLIP fails on this task, since current VLMs have a well-documented limitation of encapsulating compositional concepts such as number sense. We propose a simple yet effective method called NumCLIP to improve the quantitative understanding of VLMs. We disassemble the exact image to number-specific text matching problem into coarse classification and fine prediction stages. We discretize and phrase each numerical bin with common language concept to better leverage the available pre-trained alignment in CLIP. To consider the inherent continuous property of ordinal regression, we propose a novel fine-grained cross-modal ranking-based regularisation loss specifically designed to keep both semantic and ordinal alignment in CLIP's feature space. Experimental results on three general ordinal regression tasks demonstrate the effectiveness of NumCLIP, with 10% and 3.83% accuracy improvement on historical image dating and image aesthetics assessment task, respectively. Code is publicly available at //github.com/xmed-lab/NumCLIP.
The similarity between the question and indexed documents is a crucial factor in document retrieval for retrieval-augmented question answering. Although this is typically the only method for obtaining the relevant documents, it is not the sole approach when dealing with entity-centric questions. In this study, we propose Entity Retrieval, a novel retrieval method which rather than relying on question-document similarity, depends on the salient entities within the question to identify the retrieval documents. We conduct an in-depth analysis of the performance of both dense and sparse retrieval methods in comparison to Entity Retrieval. Our findings reveal that our method not only leads to more accurate answers to entity-centric questions but also operates more efficiently.
Classification of movement trajectories has many applications in transportation and is a key component for large-scale movement trajectory generation and anomaly detection which has key safety applications in the aftermath of a disaster or other external shock. However, the current state-of-the-art (SOTA) are based on supervised deep learning - which leads to challenges when the distribution of trajectories changes due to such a shock. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to integrate into our movement trajectory platform. We provide a suite of experiments on several recent SOTA models where we show highly accurate error detection, the ability to improve accuracy with a changing test distribution, and accuracy improvement for the base use case in addition to a suite of theoretical properties that informed algorithm development. Specifically, we show an F1 scores for predicting errors of up to 0.984, significant performance increase for out-of distribution accuracy (8.51% improvement over SOTA for zero-shot accuracy), and accuracy improvement over the SOTA model.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.