亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Census TopDown Algorithm (TDA) is a disclosure avoidance system using differential privacy for privacy-loss accounting. The algorithm ingests the final, edited version of the 2020 Census data and the final tabulation geographic definitions. The algorithm then creates noisy versions of key queries on the data, referred to as measurements, using zero-Concentrated Differential Privacy. Another key aspect of the TDA are invariants, statistics that the Census Bureau has determined, as matter of policy, to exclude from the privacy-loss accounting. The TDA post-processes the measurements together with the invariants to produce a Microdata Detail File (MDF) that contains one record for each person and one record for each housing unit enumerated in the 2020 Census. The MDF is passed to the 2020 Census tabulation system to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File. This paper describes the mathematics and testing of the TDA for this purpose.

相關內容

We develop a spectral method to solve the heat equation in a closed cylinder, achieving a near-optimal $\mathcal{O}(N\log N)$ complexity and high-order, \emph{spectral} accuracy. The algorithm relies on a novel Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method, which improves the complexity of each solve from cubic in the matrix size (in more traditional methods) to log-linear; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{7/3})$ (in traditional methods) to $\mathcal{O}(N\log N)$. Lastly, we provide numerical simulations demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods, and we provide a framework by which this heat equation solver could be applied to the incompressible Navier--Stokes equations. For the latter, we decompose the equations using a poloidal--toroidal (PT) decomposition, turning them into heat equations with nonlinear forcing from the advection term; by using implicit--explicit methods to integrate these, we can achieve the same $\mathcal{O}(N\log N)$ complexity and spectral accuracy achieved here in the heat equation.

Deep neural networks (DNN) have made impressive progress in the interpretation of image data, so that it is conceivable and to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI algorithm should take into account the vulnerability of objects or subjects on the street that ranges from "not at all", e.g. the road itself, to "high vulnerability" of pedestrians. One way to take this into account is to define the cost of confusion of one semantic category with another and use cost-based decision rules for the interpretation of probabilities, which are the output of DNNs. However, it is an open problem how to define the cost structure, who should be in charge to do that, and thereby define what AI-algorithms will actually "see". As one possible answer, we follow a participatory approach and set up an online survey to ask the public to define the cost structure. We present the survey design and the data acquired along with an evaluation that also distinguishes between perspective (car passenger vs. external traffic participant) and gender. Using simulation based $F$-tests, we find highly significant differences between the groups. These differences have consequences on the reliable detection of pedestrians in a safety critical distance to the self-driving car. We discuss the ethical problems that are related to this approach and also discuss the problems emerging from human-machine interaction through the survey from a psychological point of view. Finally, we include comments from industry leaders in the field of AI safety on the applicability of survey based elements in the design of AI functionalities in automated driving.

The purpose of this paper is to describe the development of a synthetic population dataset that is open and realistic and can be used to facilitate understanding the cartographic process and contextualizing the cartographic artifacts. We first discuss an optimization model that is designed to construct the synthetic population by minimizing the difference between the summarized information of the synthetic populations and the statistics published in census data tables. We then illustrate how the synthetic population dataset can be used to contextualize maps made using privacy-preserving census data. Two counties in Ohio are used as case studies.

Kernel Stein discrepancy (KSD) is a widely used kernel-based non-parametric measure of discrepancy between probability measures. It is often employed in the scenario where a user has a collection of samples from a candidate probability measure and wishes to compare them against a specified target probability measure. A useful property of KSD is that it may be calculated with samples from only the candidate measure and without knowledge of the normalising constant of the target measure. KSD has been employed in a range of settings including goodness-of-fit testing, parametric inference, MCMC output assessment and generative modelling. Two main issues with current KSD methodology are (i) the lack of applicability beyond the finite dimensional Euclidean setting and (ii) a lack of clarity on what influences KSD performance. This paper provides a novel spectral representation of KSD which remedies both of these, making KSD applicable to Hilbert-valued data and revealing the impact of kernel and Stein operator choice on the KSD. We demonstrate the efficacy of the proposed methodology by performing goodness-of-fit tests for various Gaussian and non-Gaussian functional models in a number of synthetic data experiments.

We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.

Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.

State-of-the-art methods for quantifying wear in cylinder liners of large internal combustion engines for stationary power generation require disassembly and cutting of the examined liner. This is followed by laboratory-based high-resolution microscopic surface depth measurement that quantitatively evaluates wear based on bearing load curves (also known as Abbott-Firestone curves). Such reference methods are destructive, time-consuming and costly. The goal of the research presented here is to develop nondestructive yet reliable methods for quantifying the surface topography. A novel machine learning framework is proposed that allows prediction of the bearing load curves representing the depth profiles from reflection RGB images of the liner surface. These images can be collected with a simple handheld microscope. A joint deep learning approach involving two neural network modules optimizes the prediction quality of surface roughness parameters as well. The network stack is trained using a custom-built database containing 422 perfectly aligned depth profile and reflection image pairs of liner surfaces of large gas engines. The observed success of the method suggests its great potential for on-site wear assessment of engines during service.

Relatively little is known about mobile phone use in a Supply Chain Management (SCM) context, especially in the Bangladeshi Ready-Made Garment (RMG) industry. RMG is a very important industry for the Bangladeshi economy but is criticized for long product supply times due to poor SCM. RMG requires obtaining real-time information and enhanced dynamic control, through utilizing information sharing and connecting stakeholders in garment manufacturing. However, a lack of IT support in the Bangladeshi RMG sector, the high price of computers and the low level of adoption of the computer-based internet are obstacles to providing sophisticated computer-aided SCM. Alternatively, the explosive adoption of mobile phones and continuous improvement of this technology is an opportunity to provide mobile-based SCM for the RMG sector. This research presents a mobile phone-based SCM framework for the Bangladeshi RMG sector. The proposed framework shows that mobile phone-based SCM can positively impact communication, information exchange, information retrieval and flow, coordination and management, which represent the main processes of effective SCM. However, to capitalize on these benefits, it is also important to discover the critical success factors and barriers to mobile SCM systems.

In an era where external data and computational capabilities far exceed statistical agencies' own resources and capabilities, they face the renewed challenge of protecting the confidentiality of underlying microdata when publishing statistics in very granular form and ensuring that these granular data are used for statistical purposes only. Conventional statistical disclosure limitation methods are too fragile to address this new challenge. This article discusses the deployment of a differential privacy framework for the 2020 US Census that was customized to protect confidentiality, particularly the most detailed geographic and demographic categories, and deliver controlled accuracy across the full geographic hierarchy.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司