亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The purpose of this paper is to describe the development of a synthetic population dataset that is open and realistic and can be used to facilitate understanding the cartographic process and contextualizing the cartographic artifacts. We first discuss an optimization model that is designed to construct the synthetic population by minimizing the difference between the summarized information of the synthetic populations and the statistics published in census data tables. We then illustrate how the synthetic population dataset can be used to contextualize maps made using privacy-preserving census data. Two counties in Ohio are used as case studies.

相關內容

This paper proposes Federated Learning (FL) based smart healthcare system where Medical Centers (MCs) train the local model using the data collected from patients and send the model weights to the miners in a blockchain-based robust framework without sharing raw data, keeping privacy preservation into deliberation. We formulate an optimization problem by maximizing the utility and minimizing the loss function considering energy consumption and FL process delay of MCs for learning effective models on distributed healthcare data underlying a blockchain-based framework. We propose a solution in two stages: first, offer a stable matching-based association algorithm to maximize the utility of both miners and MCs and then solve loss minimization using Stochastic Gradient Descent (SGD) algorithm employing FL under Differential Privacy (DP) and blockchain technology. Moreover, we incorporate blockchain technology to provide tempered resistant and decentralized model weight sharing in the proposed FL-based framework. The effectiveness of the proposed model is shown through simulation on real-world healthcare data comparing other state-of-the-art techniques.

Constructing a differentially private (DP) estimator requires deriving the maximum influence of an observation, which can be difficult in the absence of exogenous bounds on the input data or the estimator, especially in high dimensional settings. This paper shows that standard notions of statistical depth, i.e., halfspace depth and regression depth, are particularly advantageous in this regard, both in the sense that the maximum influence of a single observation is easy to analyze and that this value is typically low. This is used to motivate new approximate DP location and regression estimators using the maximizers of these two notions of statistical depth. A more computationally efficient variant of the approximate DP regression estimator is also provided. Also, to avoid requiring that users specify a priori bounds on the estimates and/or the observations, variants of these DP mechanisms are described that satisfy random differential privacy (RDP), which is a relaxation of differential privacy provided by Hall, Wasserman, and Rinaldo (2013). We also provide simulations of the two DP regression methods proposed here. The proposed estimators appear to perform favorably relative to the existing DP regression methods we consider in these simulations when either the sample size is at least 100-200 or the privacy-loss budget is sufficiently high.

In this study we approach the complexity of the vaccine debate from a new and comprehensive perspective. Focusing on the Italian context, we examine almost all the online information produced in the 2016-2021 timeframe by both sources that have a reputation for misinformation and those that do not. Although reliable sources can rely on larger newsrooms and cover more news than misinformation ones, the transfer entropy analysis of the corresponding time series reveals that the former have not always informationally dominated the latter on the vaccine subject. Indeed, the pre-pandemic period sees misinformation establish itself as leader of the process, even in causal terms, and gain dramatically more user engagement than news from reliable sources. Despite this information gap was filled during the Covid-19 outbreak, the newfound leading role of reliable sources as drivers of the information ecosystem has only partially had a beneficial effect in reducing user engagement with misinformation on vaccines. Our results indeed show that, except for effectiveness of vaccination, reliable sources have never adequately countered the anti-vax narrative, specially in the pre-pandemic period, thus contributing to exacerbate science denial and belief in conspiracy theories. At the same time, however, they confirm the efficacy of assiduously proposing a convincing counter-narrative to misinformation spread. Indeed, effectiveness of vaccination turns out to be the least engaging topic discussed by misinformation during the pandemic period, when compared to other polarising arguments such as safety concerns, legal issues and vaccine business. By highlighting the strengths and weaknesses of institutional and mainstream communication, our findings can be a valuable asset for improving and better targeting campaigns against misinformation on vaccines.

Estimation of the spatial heterogeneity in crime incidence across an entire city is an important step towards reducing crime and increasing our understanding of the physical and social functioning of urban environments. This is a difficult modeling endeavor since crime incidence can vary smoothly across space and time but there also exist physical and social barriers that result in discontinuities in crime rates between different regions within a city. A further difficulty is that there are different levels of resolution that can be used for defining regions of a city in order to analyze crime. To address these challenges, we develop a Bayesian non-parametric approach for the clustering of urban areal units at different levels of resolution simultaneously. Our approach is evaluated with an extensive synthetic data study and then applied to the estimation of crime incidence at various levels of resolution in the city of Philadelphia.

Inverse Kinematics (IK) solves the problem of mapping from the Cartesian space to the joint configuration space of a robotic arm. It has a wide range of applications in areas such as computer graphics, protein structure prediction, and robotics. With the vast advances of artificial neural networks (NNs), many researchers recently turned to data-driven approaches to solving the IK problem. Unfortunately, NNs become inadequate for robotic arms with redundant Degrees-of-Freedom (DoFs). This is because such arms may have multiple angle solutions to reach the same desired pose, while typical NNs only implement one-to-one mapping functions, which associate just one consistent output for a given input. In order to train usable NNs to solve the IK problem, most existing works employ customized training datasets, in which every desired pose only has one angle solution. This inevitably limits the generalization and automation of the proposed approaches. This paper breaks through at two fronts: (1) a systematic and mechanical approach to training data collection that covers the entire working space of the robotic arm, and can be fully automated and done only once after the arm is developed; and (2) a novel NN-based framework that can leverage the redundant DoFs to produce multiple angle solutions to any given desired pose of the robotic arm. The latter is especially useful for robotic applications such as obstacle avoidance and posture imitation.

Incremental learning is one paradigm to enable model building and updating at scale with streaming data. For end-to-end automatic speech recognition (ASR) tasks, the absence of human annotated labels along with the need for privacy preserving policies for model building makes it a daunting challenge. Motivated by these challenges, in this paper we use a cloud based framework for production systems to demonstrate insights from privacy preserving incremental learning for automatic speech recognition (ILASR). By privacy preserving, we mean, usage of ephemeral data which are not human annotated. This system is a step forward for production levelASR models for incremental/continual learning that offers near real-time test-bed for experimentation in the cloud for end-to-end ASR, while adhering to privacy-preserving policies. We show that the proposed system can improve the production models significantly(3%) over a new time period of six months even in the absence of human annotated labels with varying levels of weak supervision and large batch sizes in incremental learning. This improvement is 20% over test sets with new words and phrases in the new time period. We demonstrate the effectiveness of model building in a privacy-preserving incremental fashion for ASR while further exploring the utility of having an effective teacher model and use of large batch sizes.

Optical coherence tomography angiography (OCTA) can non-invasively image the eye's circulatory system. In order to reliably characterize the retinal vasculature, there is a need to automatically extract quantitative metrics from these images. The calculation of such biomarkers requires a precise semantic segmentation of the blood vessels. However, deep-learning-based methods for segmentation mostly rely on supervised training with voxel-level annotations, which are costly to obtain. In this work, we present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels; thereby obviating the need for manual annotation of training data. Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal vascular plexuses and 2) a suite of physics-based image augmentations that emulate the OCTA image acquisition process including typical artifacts. In extensive benchmarking experiments, we demonstrate the utility of our synthetic data by successfully training retinal vessel segmentation algorithms. Encouraged by our method's competitive quantitative and superior qualitative performance, we believe that it constitutes a versatile tool to advance the quantitative analysis of OCTA images.

Learning controllers from data for stabilizing dynamical systems typically follows a two step process of first identifying a model and then constructing a controller based on the identified model. However, learning models means identifying generic descriptions of the dynamics of systems, which can require large amounts of data and extracting information that are unnecessary for the specific task of stabilization. The contribution of this work is to show that if a linear dynamical system has dimension (McMillan degree) $n$, then there always exist $n$ states from which a stabilizing feedback controller can be constructed, independent of the dimension of the representation of the observed states and the number of inputs. By building on previous work, this finding implies that any linear dynamical system can be stabilized from fewer observed states than the minimal number of states required for learning a model of the dynamics. The theoretical findings are demonstrated with numerical experiments that show the stabilization of the flow behind a cylinder from less data than necessary for learning a model.

The user persona is a communication tool for designers to generate a mental model that describes the archetype of users. Developing building occupant personas is proven to be an effective method for human-centered smart building design, which considers occupant comfort, behavior, and energy consumption. Optimization of building energy consumption also requires a deep understanding of occupants' preferences and behaviors. The current approaches to developing building occupant personas face a major obstruction of manual data processing and analysis. In this study, we propose and evaluate a machine learning-based semi-automated approach to generate building occupant personas. We investigate the 2015 Residential Energy Consumption Dataset with five machine learning techniques - Linear Discriminant Analysis, K Nearest Neighbors, Decision Tree (Random Forest), Support Vector Machine, and AdaBoost classifier - for the prediction of 16 occupant characteristics, such as age, education, and, thermal comfort. The models achieve an average accuracy of 61% and accuracy over 90% for attributes including the number of occupants in the household, their age group, and preferred usage of heating or cooling equipment. The results of the study show the feasibility of using machine learning techniques for the development of building occupant persona to minimize human effort.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

北京阿比特科技有限公司