亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semantic communications is considered as a promising technology to increase the efficiency of next-generation communication systems, particularly targeting human-machine and machine-type communications. In contrast to the source-agnostic approach of conventional wireless communication systems, semantic communication seeks to ensure that only the relevant information for the underlying task is communicated to the receiver. Considering that most semantic communication applications have strict latency, bandwidth, and power constraints, a prominent approach is to model them as a joint source-channel coding (JSCC) problem. Although JSCC has been a long-standing open problem in communication and coding theory, remarkable performance gains have been shown recently over existing separate source and channel coding systems, particularly in low-latency and low-power scenarios. Recent progress is thanks to the adoption of deep learning techniques for joint source-channel code design that outperform the concatenation of state-of-the-art compression and channel coding schemes, which are results of decades-long research efforts. In this article, we present an adaptive deep learning based JSCC (DeepJSCC) architecture for semantic communications, introduce its design principles, highlight its benefits, and outline future research challenges that lie ahead.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Text augmentation is a technique for constructing synthetic data from an under-resourced corpus to improve predictive performance. Synthetic data generation is common in numerous domains. However, recently text augmentation has emerged in natural language processing (NLP) to improve downstream tasks. One of the current state-of-the-art text augmentation techniques is easy data augmentation (EDA), which augments the training data by injecting and replacing synonyms and randomly permuting sentences. One major obstacle with EDA is the need for versatile and complete synonym dictionaries, which cannot be easily found in low-resource languages. To improve the utility of EDA, we propose two extensions, easy distributional data augmentation (EDDA) and type specific similar word replacement (TSSR), which uses semantic word context information and part-of-speech tags for word replacement and augmentation. In an extensive empirical evaluation, we show the utility of the proposed methods, measured by F1 score, on two representative datasets in Swedish as an example of a low-resource language. With the proposed methods, we show that augmented data improve classification performances in low-resource settings.

Variational inference is an approximation framework for Bayesian inference that seeks to improve quantified uncertainty in predictions by optimizing a simplified distribution over parameters to stand in for the full posterior. Capturing model variations that remain consistent with training data enables more robust predictions by reducing parameter sensitivity. This work introduces a fixed-point optimization for variational inference that is applicable when every feasible log density can be expressed as a linear combination of functions from a given basis. In such cases, the optimizer becomes a fixed-point of projective integral updates. When the basis spans univariate quadratics in each parameter, feasible densities are Gaussian and the projective integral updates yield quasi-Newton variational Bayes (QNVB). Other bases and updates are also possible. As these updates require high-dimensional integration, this work first proposes an efficient quasirandom quadrature sequence for mean-field distributions. Each iterate of the sequence contains two evaluation points that combine to correctly integrate all univariate quadratics and, if the mean-field factors are symmetric, all univariate cubics. More importantly, averaging results over short subsequences achieves periodic exactness on a much larger space of multivariate quadratics. The corresponding variational updates require 4 loss evaluations with standard (not second-order) backpropagation to eliminate error terms from over half of all multivariate quadratic basis functions. This integration technique is motivated by first proposing stochastic blocked mean-field quadratures, which may be useful in other contexts. A PyTorch implementation of QNVB allows for better control over model uncertainty during training than competing methods. Experiments demonstrate superior generalizability for multiple learning problems and architectures.

We introduce a formal framework to study the multiple unicast problem for a coded network in which the network code is linear over a finite field and fixed. We show that the problem corresponds to an interference alignment problem over a finite field. In this context, we establish an outer bound for the achievable rate region and provide examples of networks where the bound is sharp. We finally give evidence of the crucial role played by the field characteristic in the problem.

Continuous authentication has been widely studied to provide high security and usability for mobile devices by continuously monitoring and authenticating users. Recent studies adopt multibiometric fusion for continuous authentication to provide high accuracy even when some of captured biometric data are of a low quality. However, existing continuous fusion approaches are resource-heavy as they rely on all classifiers being activated all the time and may not be suitable for mobile devices. In this paper, we propose a new approach to multibiometric continuous authentication: two-dimensional dynamic fusion. Our key insight is that multibiometric continuous authentication calculates two-dimensional matching scores over classifiers and over time. Based on this, we dynamically select a set of classifiers based on the context in which authentication is taking place, and fuse matching scores by multi-classifier fusion and multi-sample fusion. Through experimental evaluation, we show that our approach provides a better balance between resource usage and accuracy than the existing fusion methods. In particular, we show that our approach provides higher accuracy than the existing methods with the same number of score calculations by adopting multi-sample fusion.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司