亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper the Micro-Macro Parareal algorithm was adapted to PDEs. The parallel-in-time approach requires two meshes of different spatial resolution in order to compute approximations in an iterative way to a predefined reference solution. When fast convergence in few iterations can be accomplished the algorithm is able to generate wall-time reduction in comparison to the serial computation. We chose the laminar flow around a cylinder benchmark on 2-dimensional domain which was simulated with the open-source software OpenFoam. The numerical experiments presented in this work aim to approximate states local in time and space and the diagnostic lift coefficient. The Reynolds number is gradually increased from 100 to 1,000, before the transition to turbulent flows sets in. After the results are presented the convergence behavior is discussed with respect to the Reynolds number and the applied interpolation schemes.

相關內容

Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labeling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of Anchor to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.

This paper investigates the low-complex linear minimum mean squared error (LMMSE) channel estimation in an extra-large scale MIMO system with the spherical wave model (SWM). We model the extra-large scale MIMO channels using the SWM in the terahertz (THz) line-of-sight propagation, in which the transceiver is a uniform circular antenna array. On this basis, for the known channel covariance matrix (CCM), a low-complex LMMSE channel estimation algorithm is proposed by exploiting the spherical wave properties (SWP). Meanwhile, for the unknown CCM, a similar low-complex LMMSE channel estimation algorithm is also proposed. Both theoretical and simulation results show that the proposed algorithm has lower complexity without reducing the accuracy of channel estimation.

In this paper we consider the problem of obtaining sharp bounds for the performance of temporal difference (TD) methods with linear functional approximation for policy evaluation in discounted Markov Decision Processes. We show that a simple algorithm with a universal and instance-independent step size together with Polyak-Ruppert tail averaging is sufficient to obtain near-optimal variance and bias terms. We also provide the respective sample complexity bounds. Our proof technique is based on refined error bounds for linear stochastic approximation together with the novel stability result for the product of random matrices that arise from the TD-type recurrence.

In the classic measurement error framework, covariates are contaminated by independent additive noise. This paper considers parameter estimation in such a linear errors-in-variables model where the unknown measurement error distribution is heteroscedastic across observations. We propose a new generalized method of moment (GMM) estimator that combines a moment correction approach and a phase function-based approach. The former requires distributions to have four finite moments, while the latter relies on covariates having asymmetric distributions. The new estimator is shown to be consistent and asymptotically normal under appropriate regularity conditions. The asymptotic covariance of the estimator is derived, and the estimated standard error is computed using a fast bootstrap procedure. The GMM estimator is demonstrated to have strong finite sample performance in numerical studies, especially when the measurement errors follow non-Gaussian distributions.

We present an implementation of a Web3 platform that leverages the Groth16 Zero-Knowledge Proof schema to verify the validity of questionnaire results within Smart Contracts. Our approach ensures that the answer key of the questionnaire remains undisclosed throughout the verification process, while ensuring that the evaluation is done fairly. To accomplish this, users respond to a series of questions, and their answers are encoded and securely transmitted to a hidden backend. The backend then performs an evaluation of the user's answers, generating the overall result of the questionnaire. Additionally, it generates a Zero-Knowledge Proof, attesting that the answers were appropriately evaluated against a valid set of constraints. Next, the user submits their result along with the proof to a Smart Contract, which verifies their validity and issues a non-fungible token (NFT) as an attestation of the user's test result. In this research, we implemented the Zero-Knowledge functionality using Circom 2 and deployed the Smart Contract using Solidity, thereby showcasing a practical and secure solution for questionnaire validity verification in the context of Smart Contracts.

We devise a version of Linear Temporal Logic (LTL) on a denotational domain of streams. We investigate this logic in terms of domain theory, (point-free) topology and geometric logic. This yields the first steps toward an extension of the "Domain Theory in Logical Form" paradigm to temporal liveness properties. We show that the negation-free formulae of LTL induce sober subspaces of streams, but that this is in general not the case in presence of negation. We propose a direct, inductive, translation of negation-free LTL to geometric logic. This translation reflects the approximations used to compute the usual fixpoint representations of LTL modalities. As a motivating example, we handle a natural input-output specification for the usual filter function on streams.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司