亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider two symmetry metrics to detect partisan gerrymandering: the Mean-Median Difference (MM) and Partisan Bias (PB). To lay the groundwork for our main results, we first assert that the foundation of a partisan gerrymander is to draw a map so that the preferred party wins an extreme number of seats, and that both the Mean-Median Difference and Partisan Bias have been used to detect partisan gerrymandering. We then provide both a theoretical and empirical analysis of the Mean-Median Difference and Partisan Bias. In our theoretical analysis, we consider vote-share, seat-share pairs (V,S) for which one can construct election data having vote share V and seat share S, and turnout is equal in each district. We calculate the range of values that MM and PB can achieve on that constructed election data. In the process, we find the range of vote-share, seat share pairs (V,S) for which there is constructed election data with vote share V , seat share S, and MM = 0, and see that the corresponding range for PB is the same set of (V,S) pairs. We show how the set of such (V,S) pairs allowing for MM = 0 (and PB = 0) changes when turnout in each district is allowed to be different. By observing the results of this theoretical analysis, we give examples of how these two metrics are unable to detect when a map has an extreme number of districts won. Because these examples are constructed, we follow this with our empirical study, in which we show on 18 different U.S. maps that these two metrics are unable to detect when a map has an extreme number of districts won.

相關內容

This paper presents a simplification of robotic system model analysis due to the transfer of Robotic System Hierarchical Petri Net (RSHPN) meta-model properties onto the model of a designed system. Key contributions include: 1) analysis of RSHPN meta-model properties; 2) decomposition of RSHPN analysis into analysis of individual Petri nets, thus the reduction of state space explosion; and 3) transfer of RSHPN meta-model properties onto the produced models, hence elimination of the need for full re-analysis of the RSHPN model when creating new robotic systems. Only task-dependent parts of the model need to be analyzed. This approach streamlines the analysis thus reducing the design time. Moreover, it produces a specification which is a solid foundation for the implementation of the system. The obtained results highlight the potential of Petri nets as a valuable formal framework for analyzing robotic system properties.

Context: As the diversity and complexity of regulations affecting Software-Intensive Products and Services (SIPS) is increasing, software engineers need to address the growing regulatory scrutiny. As with any other non-negotiable requirements, SIPS compliance should be addressed early in SIPS engineering - i.e., during requirements engineering (RE). Objectives: In the conditions of the expanding regulatory landscape, existing research offers scattered insights into regulatory compliance of SIPS. This study addresses the pressing need for a structured overview of the state of the art in software RE and its contribution to regulatory compliance of SIPS. Method: We conducted a systematic mapping study to provide an overview of the current state of research regarding challenges, principles and practices for regulatory compliance of SIPS related to RE. We focused on the role of RE and its contribution to other SIPS lifecycle phases. We retrieved 6914 studies published from 2017 until 2023 from four academic databases, which we filtered down to 280 relevant primary studies. Results: We identified and categorized the RE-related challenges in regulatory compliance of SIPS and their potential connection to six types of principles and practices. We found that about 13.6% of the primary studies considered the involvement of both software engineers and legal experts. About 20.7% of primary studies considered RE in connection to other process areas. Most primary studies focused on a few popular regulation fields and application domains. Our results suggest that there can be differences in terms of challenges and involvement of stakeholders across different fields of regulation. Conclusion: Our findings highlight the need for an in-depth investigation of stakeholders' roles, relationships between process areas, and specific challenges for distinct regulatory fields to guide research and practice.

This study develops an algorithm to solve a variation of the Shortest Common Superstring (SCS) problem. There are two modifications to the base SCS problem. First, one string in the set S is allowed to have up to K mistakes, defined as not matching the SCS in at most K positions. Second, no string in S can be a substring of another in S. The algorithm proposed for the problem is exact.

We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.

The rise of large foundation models, trained on extensive datasets, is revolutionizing the field of AI. Models such as SAM, DALL-E2, and GPT-4 showcase their adaptability by extracting intricate patterns and performing effectively across diverse tasks, thereby serving as potent building blocks for a wide range of AI applications. Autonomous driving, a vibrant front in AI applications, remains challenged by the lack of dedicated vision foundation models (VFMs). The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs in this field. This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions. Through a systematic analysis of over 250 papers, we dissect essential techniques for VFM development, including data preparation, pre-training strategies, and downstream task adaptation. Moreover, we explore key advancements such as NeRF, diffusion models, 3D Gaussian Splatting, and world models, presenting a comprehensive roadmap for future research. To empower researchers, we have built and maintained //github.com/zhanghm1995/Forge_VFM4AD, an open-access repository constantly updated with the latest advancements in forging VFMs for autonomous driving.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司