In this paper we consider linearly constrained optimization problems and propose a loopless projection stochastic approximation (LPSA) algorithm. It performs the projection with probability $p_n$ at the $n$-th iteration to ensure feasibility. Considering a specific family of the probability $p_n$ and step size $\eta_n$, we analyze our algorithm from an asymptotic and continuous perspective. Using a novel jump diffusion approximation, we show that the trajectories connecting those properly rescaled last iterates weakly converge to the solution of specific stochastic differential equations (SDEs). By analyzing SDEs, we identify the asymptotic behaviors of LPSA for different choices of $(p_n, \eta_n)$. We find that the algorithm presents an intriguing asymptotic bias-variance trade-off and yields phase transition phenomenons, according to the relative magnitude of $p_n$ w.r.t. $\eta_n$. This finding provides insights on selecting appropriate ${(p_n, \eta_n)}_{n \geq 1}$ to minimize the projection cost. Additionally, we propose the Debiased LPSA (DLPSA) as a practical application of our jump diffusion approximation result. DLPSA is shown to effectively reduce projection complexity compared to vanilla LPSA.
In this paper, we study the conditional stochastic optimization (CSO) problem which covers a variety of applications including portfolio selection, reinforcement learning, robust learning, causal inference, etc. The sample-averaged gradient of the CSO objective is biased due to its nested structure, and therefore requires a high sample complexity to reach convergence. We introduce a general stochastic extrapolation technique that effectively reduces the bias. We show that for nonconvex smooth objectives, combining this extrapolation with variance reduction techniques can achieve a significantly better sample complexity than existing bounds. Additionally, we develop new algorithms for the finite-sum variant of the CSO problem that also significantly improve upon existing results. Finally, we believe that our debiasing technique has the potential to be a useful tool for addressing similar challenges in other stochastic optimization problems.
Denoising Diffusion Probabilistic Models have shown extraordinary ability on various generative tasks. However, their slow inference speed renders them impractical in speech synthesis. This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality. Firstly, we employ linear interpolation between the target and noise to design a diffusion sequence for training, while previously the diffusion path that links the noise and target is a curved segment. When decreasing the number of sampling steps (i.e., the number of line segments used to fit the path), the ease of fitting straight lines compared to curves allows us to generate higher quality samples from a random noise with fewer iterations. Secondly, to reduce computational complexity and achieve effective global modeling of noisy speech, LinDiff employs a patch-based processing approach that partitions the input signal into small patches. The patch-wise token leverages Transformer architecture for effective modeling of global information. Adversarial training is used to further improve the sample quality with decreased sampling steps. We test proposed method with speech synthesis conditioned on acoustic feature (Mel-spectrograms). Experimental results verify that our model can synthesize high-quality speech even with only one diffusion step. Both subjective and objective evaluations demonstrate that our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed (3 diffusion steps).
We present a pseudo-reversible normalizing flow method for efficiently generating samples of the state of a stochastic differential equation (SDE) with different initial distributions. The primary objective is to construct an accurate and efficient sampler that can be used as a surrogate model for computationally expensive numerical integration of SDE, such as those employed in particle simulation. After training, the normalizing flow model can directly generate samples of the SDE's final state without simulating trajectories. Existing normalizing flows for SDEs depend on the initial distribution, meaning the model needs to be re-trained when the initial distribution changes. The main novelty of our normalizing flow model is that it can learn the conditional distribution of the state, i.e., the distribution of the final state conditional on any initial state, such that the model only needs to be trained once and the trained model can be used to handle various initial distributions. This feature can provide a significant computational saving in studies of how the final state varies with the initial distribution. We provide a rigorous convergence analysis of the pseudo-reversible normalizing flow model to the target probability density function in the Kullback-Leibler divergence metric. Numerical experiments are provided to demonstrate the effectiveness of the proposed normalizing flow model.
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
Verification of discrete time or continuous time dynamical systems over the reals is known to be undecidable. It is however known that undecidability does not hold for various classes of systems: if robustness is defined as the fact that reachability relation is stable under infinitesimal perturbation, then their reachability relation is decidable. In other words, undecidability implies sensitivity under infinitesimal perturbation, a property usually not expected in systems considered in practice, and hence can be seen (somehow informally) as an artefact of the theory, that always assumes exactness. In a similar vein, it is known that, while undecidability holds for logical formulas over the reals, it does not hold when considering delta-undecidability: one must determine whether a property is true, or $\delta$-far from being true. We first extend the previous statements to a theory for general (discrete time, continuous-time, and even hybrid) dynamical systems, and we relate the two approaches. We also relate robustness to some geometric properties of reachability relation. But mainly, when a system is robust, it then makes sense to quantify at which level of perturbation. We prove that assuming robustness to polynomial perturbations on precision leads to reachability verifiable in complexity class PSPACE, and even to a characterization of this complexity class. We prove that assuming robustness to polynomial perturbations on time or length of trajectories leads to similar statements, but with PTIME. It has been recently unexpectedly shown that the length of a solution of a polynomial ordinary differential equation corresponds to a time of computation: PTIME corresponds to solutions of polynomial differential equations of polynomial length. Our results argue that the answer is given by precision: space corresponds to the involved precision.
Demand for reliable statistics at a local area (small area) level has greatly increased in recent years. Traditional area-specific estimators based on probability samples are not adequate because of small sample size or even zero sample size in a local area. As a result, methods based on models linking the areas are widely used. World Bank focused on estimating poverty measures, in particular poverty incidence and poverty gap called FGT measures, using a simulated census method, called ELL, based on a one-fold nested error model for a suitable transformation of the welfare variable. Modified ELL methods leading to significant gain in efficiency over ELL also have been proposed under the one-fold model. An advantage of ELL and modified ELL methods is that distributional assumptions on the random effects in the model are not needed. In this paper, we extend ELL and modified ELL to two-fold nested error models to estimate poverty indicators for areas (say a state) and subareas (say counties within a state). Our simulation results indicate that the modified ELL estimators lead to large efficiency gains over ELL at the area level and subarea level. Further, modified ELL method retaining both area and subarea estimated effects in the model (called MELL2) performs significantly better in terms of mean squared error (MSE) for sampled subareas than the modified ELL retaining only estimated area effect in the model (called MELL1).
Given a traversal algorithm, cover time is the expected number of steps needed to visit all nodes in a given graph. A smaller cover time means a higher exploration efficiency of traversal algorithm. Although random walk algorithms have been studied extensively in the existing literature, there has been no cover time result for any non-Markovian method. In this work, we stand on a theoretical perspective and show that the negative feedback strategy (a count-based exploration method) is better than the naive random walk search. In particular, the former strategy can locally improve the search efficiency for an arbitrary graph. It also achieves smaller cover times for special but important graphs, including clique graphs, tree graphs, etc. Moreover, we make connections between our results and reinforcement learning literature to give new insights on why classical UCB and MCTS algorithms are so useful. Various numerical results corroborate our theoretical findings.
We propose a novel $K$-nearest neighbor resampling procedure for estimating the performance of a policy from historical data containing realized episodes of a decision process generated under a different policy. We focus on feedback policies that depend deterministically on the current state in environments with continuous state-action spaces and system-inherent stochasticity effected by chosen actions. Such settings are common in a wide range of high-stake applications and are actively investigated in the context of stochastic control. Our procedure exploits that similar state/action pairs (in a metric sense) are associated with similar rewards and state transitions. This enables our resampling procedure to tackle the counterfactual estimation problem underlying off-policy evaluation (OPE) by simulating trajectories similarly to Monte Carlo methods. Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization and does not explicitly assume a parametric model for the environment's dynamics. These properties make the proposed resampling algorithm particularly useful for stochastic control environments. We prove that our method is statistically consistent in estimating the performance of a policy in the OPE setting under weak assumptions and for data sets containing entire episodes rather than independent transitions. To establish the consistency, we generalize Stone's Theorem, a well-known result in nonparametric statistics on local averaging, to include episodic data and the counterfactual estimation underlying OPE. Numerical experiments demonstrate the effectiveness of the algorithm in a variety of stochastic control settings including a linear quadratic regulator, trade execution in limit order books and online stochastic bin packing.
We consider the problem of answering observational, interventional, and counterfactual queries in a causally sufficient setting where only observational data and the causal graph are available. Utilizing the recent developments in diffusion models, we introduce diffusion-based causal models (DCM) to learn causal mechanisms, that generate unique latent encodings. These encodings enable us to directly sample under interventions and perform abduction for counterfactuals. Diffusion models are a natural fit here, since they can encode each node to a latent representation that acts as a proxy for exogenous noise. Our empirical evaluations demonstrate significant improvements over existing state-of-the-art methods for answering causal queries. Furthermore, we provide theoretical results that offer a methodology for analyzing counterfactual estimation in general encoder-decoder models, which could be useful in settings beyond our proposed approach.
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.