亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quadrupedal landing is a complex process involving large impacts, elaborate contact transitions, and is a crucial recovery behavior observed in many biological animals. This work presents a real-time, optimal landing controller that is free of pre-specified contact schedules. The controller determines optimal touchdown postures and reaction force profiles and is able to recover from a variety of falling configurations. The quadrupedal platform used, the MIT Mini Cheetah, recovered safely from drops of up to 8 m in simulation, as well as from a range of orientations and planar velocities. The controller is also tested on hardware, successfully recovering from drops of up to 2 m.

相關內容

Modern neural networks are able to perform at least as well as humans in numerous tasks involving object classification and image generation. However, small perturbations which are imperceptible to humans may significantly degrade the performance of well-trained deep neural networks. We provide a Distributionally Robust Optimization (DRO) framework which integrates human-based image quality assessment methods to design optimal attacks that are imperceptible to humans but significantly damaging to deep neural networks. Through extensive experiments, we show that our attack algorithm generates better-quality (less perceptible to humans) attacks than other state-of-the-art human imperceptible attack methods. Moreover, we demonstrate that DRO training using our optimally designed human imperceptible attacks can improve group fairness in image classification. Towards the end, we provide an algorithmic implementation to speed up DRO training significantly, which could be of independent interest.

Retinal surgery is a complex medical procedure that requires exceptional expertise and dexterity. For this purpose, several robotic platforms are currently being developed to enable or improve the outcome of microsurgical tasks. Since the control of such robots is often designed for navigation inside the eye in proximity to the retina, successful trocar docking and inserting the instrument into the eye represents an additional cognitive effort, and is, therefore, one of the open challenges in robotic retinal surgery. For this purpose, we present a platform for autonomous trocar docking that combines computer vision and a robotic setup. Inspired by the Cuban Colibri (hummingbird) aligning its beak to a flower using only vision, we mount a camera onto the endeffector of a robotic system. By estimating the position and pose of the trocar, the robot is able to autonomously align and navigate the instrument towards the Trocar's Entry Point (TEP) and finally perform the insertion. Our experiments show that the proposed method is able to accurately estimate the position and pose of the trocar and achieve repeatable autonomous docking. The aim of this work is to reduce the complexity of robotic setup preparation prior to the surgical task and therefore, increase the intuitiveness of the system integration into the clinical workflow.

The challenges presented in an autonomous racing situation are distinct from those faced in regular autonomous driving and require faster end-to-end algorithms and consideration of a longer horizon in determining optimal current actions keeping in mind upcoming maneuvers and situations. In this paper, we propose an end-to-end method for autonomous racing that takes in as inputs video information from an onboard camera and determines final steering and throttle control actions. We use the following split to construct such a method (1) learning a low dimensional representation of the scene, (2) pre-generating the optimal trajectory for the given scene, and (3) tracking the predicted trajectory using a classical control method. In learning a low-dimensional representation of the scene, we use intermediate representations with a novel unsupervised trajectory planner to generate expert trajectories, and hence utilize them to directly predict race lines from a given front-facing input image. Thus, the proposed algorithm employs the best of two worlds - the robustness of learning-based approaches to perception and the accuracy of optimization-based approaches for trajectory generation in an end-to-end learning-based framework. We deploy and demonstrate our framework on CARLA, a photorealistic simulator for testing self-driving cars in realistic environments.

We present Path Integral Sampler~(PIS), a novel algorithm to draw samples from unnormalized probability density functions. The PIS is built on the Schr\"odinger bridge problem which aims to recover the most likely evolution of a diffusion process given its initial distribution and terminal distribution. The PIS draws samples from the initial distribution and then propagates the samples through the Schr\"odinger bridge to reach the terminal distribution. Applying the Girsanov theorem, with a simple prior diffusion, we formulate the PIS as a stochastic optimal control problem whose running cost is the control energy and terminal cost is chosen according to the target distribution. By modeling the control as a neural network, we establish a sampling algorithm that can be trained end-to-end. We provide theoretical justification of the sampling quality of PIS in terms of Wasserstein distance when sub-optimal control is used. Moreover, the path integrals theory is used to compute importance weights of the samples to compensate for the bias induced by the sub-optimality of the controller and time-discretization. We experimentally demonstrate the advantages of PIS compared with other start-of-the-art sampling methods on a variety of tasks.

A challenge in using robots in human-inhabited environments is to design behavior that is engaging, yet robust to the perturbations induced by human interaction. Our idea is to imbue the robot with intrinsic motivation (IM) so that it can handle new situations and appears as a genuine social other to humans and thus be of more interest to a human interaction partner. Human-robot interaction (HRI) experiments mainly focus on scripted or teleoperated robots, that mimic characteristics such as IM to control isolated behavior factors. This article presents a "robotologist" study design that allows comparing autonomously generated behaviors with each other, and, for the first time, evaluates the human perception of IM-based generated behavior in robots. We conducted a within-subjects user study (N=24) where participants interacted with a fully autonomous Sphero BB8 robot with different behavioral regimes: one realizing an adaptive, intrinsically motivated behavior and the other being reactive, but not adaptive. The robot and its behaviors are intentionally kept minimal to concentrate on the effect induced by IM. A quantitative analysis of post-interaction questionnaires showed a significantly higher perception of the dimension "Warmth" compared to the reactive baseline behavior. Warmth is considered a primary dimension for social attitude formation in human social cognition. A human perceived as warm (friendly, trustworthy) experiences more positive social interactions.

Multi-robot systems offer enhanced capability over their monolithic counterparts, but they come at a cost of increased complexity in coordination. To reduce complexity and to make the problem tractable, multi-robot motion planning (MRMP) methods in the literature adopt de-coupled approaches that sacrifice either optimality or dynamic feasibility. In this paper, we present a convexification method, namely "parabolic relaxation", to generate optimal and dynamically feasible trajectories for MRMP in the coupled joint-space of all robots. We leverage upon the proposed relaxation to tackle the problem complexity and to attain computational tractability for planning over one hundred robots in extremely clustered environments. We take a multi-stage optimization approach that consists of i) mathematically formulating MRMP as a non-convex optimization, ii) lifting the problem into a higher dimensional space, iii) convexifying the problem through the proposed computationally efficient parabolic relaxation, and iv) penalizing with iterative search to ensure feasibility and recovery of feasible and near-optimal solutions to the original problem. Our numerical experiments demonstrate that the proposed approach is capable of generating optimal and dynamically feasible trajectories for challenging motion planning problems with higher success rate than the state-of-the-art, yet remain computationally tractable for over one hundred robots in a highly dense environment.

This work recasts time-dependent optimal control problems governed by partial differential equations in a Dynamic Mode Decomposition with control framework. Indeed, since the numerical solution of such problems requires a lot of computational effort, we rely on this specific data-driven technique, using both solution and desired state measurements to extract the underlying system dynamics. Thus, after the Dynamic Mode Decomposition operators construction, we reconstruct and perform future predictions for all the variables of interest at a lower computational cost with respect to the standard space-time discretized models. We test the methodology in terms of relative reconstruction and prediction errors on a boundary control for a Graetz flow and on a distributed control with Stokes constraints.

Iterative learning control (ILC) is a powerful technique for high performance tracking in the presence of modeling errors for optimal control applications. There is extensive prior work showing its empirical effectiveness in applications such as chemical reactors, industrial robots and quadcopters. However, there is little prior theoretical work that explains the effectiveness of ILC even in the presence of large modeling errors, where optimal control methods using the misspecified model (MM) often perform poorly. Our work presents such a theoretical study of the performance of both ILC and MM on Linear Quadratic Regulator (LQR) problems with unknown transition dynamics. We show that the suboptimality gap, as measured with respect to the optimal LQR controller, for ILC is lower than that for MM by higher order terms that become significant in the regime of high modeling errors. A key part of our analysis is the perturbation bounds for the discrete Ricatti equation in the finite horizon setting, where the solution is not a fixed point and requires tracking the error using recursive bounds. We back our theoretical findings with empirical experiments on a toy linear dynamical system with an approximate model, a nonlinear inverted pendulum system with misspecified mass, and a nonlinear planar quadrotor system in the presence of wind. Experiments show that ILC outperforms MM significantly, in terms of the cost of computed trajectories, when modeling errors are high.

When we humans look at a video of human-object interaction, we can not only infer what is happening but we can even extract actionable information and imitate those interactions. On the other hand, current recognition or geometric approaches lack the physicality of action representation. In this paper, we take a step towards a more physical understanding of actions. We address the problem of inferring contact points and the physical forces from videos of humans interacting with objects. One of the main challenges in tackling this problem is obtaining ground-truth labels for forces. We sidestep this problem by instead using a physics simulator for supervision. Specifically, we use a simulator to predict effects and enforce that estimated forces must lead to the same effect as depicted in the video. Our quantitative and qualitative results show that (a) we can predict meaningful forces from videos whose effects lead to accurate imitation of the motions observed, (b) by jointly optimizing for contact point and force prediction, we can improve the performance on both tasks in comparison to independent training, and (c) we can learn a representation from this model that generalizes to novel objects using few shot examples.

Machine learning algorithms have found several applications in the field of robotics and control systems. The control systems community has started to show interest towards several machine learning algorithms from the sub-domains such as supervised learning, imitation learning and reinforcement learning to achieve autonomous control and intelligent decision making. Amongst many complex control problems, stable bipedal walking has been the most challenging problem. In this paper, we present an architecture to design and simulate a planar bipedal walking robot(BWR) using a realistic robotics simulator, Gazebo. The robot demonstrates successful walking behaviour by learning through several of its trial and errors, without any prior knowledge of itself or the world dynamics. The autonomous walking of the BWR is achieved using reinforcement learning algorithm called Deep Deterministic Policy Gradient(DDPG). DDPG is one of the algorithms for learning controls in continuous action spaces. After training the model in simulation, it was observed that, with a proper shaped reward function, the robot achieved faster walking or even rendered a running gait with an average speed of 0.83 m/s. The gait pattern of the bipedal walker was compared with the actual human walking pattern. The results show that the bipedal walking pattern had similar characteristics to that of a human walking pattern.

北京阿比特科技有限公司