Recommender systems have become crucial in information filtering nowadays. Existing recommender systems extract user preferences based on the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, unfortunately, the real world is driven by causality, not just correlation, and correlation does not imply causation. For instance, recommender systems might recommend a battery charger to a user after buying a phone, where the latter can serve as the cause of the former; such a causal relation cannot be reversed. Recently, to address this, researchers in recommender systems have begun utilizing causal inference to extract causality, thereby enhancing the recommender system. In this survey, we offer a comprehensive review of the literature on causal inference-based recommendation. Initially, we introduce the fundamental concepts of both recommender system and causal inference as the foundation for subsequent content. We then highlight the typical issues faced by non-causality recommender system. Following that, we thoroughly review the existing work on causal inference-based recommender systems, based on a taxonomy of three-aspect challenges that causal inference can address. Finally, we discuss the open problems in this critical research area and suggest important potential future works.
In many consumer virtual reality (VR) applications, users embody predefined characters that offer minimal customization options, frequently emphasizing storytelling over user choice. We explore whether matching a user's physical characteristics, specifically ethnicity and gender, with their virtual self-avatar affects their sense of embodiment in VR. We conducted a 2 x 2 within-subjects experiment (n=32) with a diverse user population to explore the impact of matching or not matching a user's self-avatar to their ethnicity and gender on their sense of embodiment. Our results indicate that matching the ethnicity of the user and their self-avatar significantly enhances sense of embodiment regardless of gender, extending across various aspects, including appearance, response, and ownership. We also found that matching gender significantly enhanced ownership, suggesting that this aspect is influenced by matching both ethnicity and gender. Interestingly, we found that matching ethnicity specifically affects self-location while matching gender specifically affects one's body ownership.
Recent text-to-video diffusion models have achieved impressive progress. In practice, users often desire the ability to control object motion and camera movement independently for customized video creation. However, current methods lack the focus on separately controlling object motion and camera movement in a decoupled manner, which limits the controllability and flexibility of text-to-video models. In this paper, we introduce Direct-a-Video, a system that allows users to independently specify motions for one or multiple objects and/or camera movements, as if directing a video. We propose a simple yet effective strategy for the decoupled control of object motion and camera movement. Object motion is controlled through spatial cross-attention modulation using the model's inherent priors, requiring no additional optimization. For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters. We further employ an augmentation-based approach to train these layers in a self-supervised manner on a small-scale dataset, eliminating the need for explicit motion annotation. Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios. Extensive experiments demonstrate the superiority and effectiveness of our method. Project page: //direct-a-video.github.io/.
In safety-critical domains like automated driving (AD), errors by the object detector may endanger pedestrians and other vulnerable road users (VRU). As common evaluation metrics are not an adequate safety indicator, recent works employ approaches to identify safety-critical VRU and back-annotate the risk to the object detector. However, those approaches do not consider the safety factor in the deep neural network (DNN) training process. Thus, state-of-the-art DNN penalizes all misdetections equally irrespective of their criticality. Subsequently, to mitigate the occurrence of critical failure cases, i.e., false negatives, a safety-aware training strategy might be required to enhance the detection performance for critical pedestrians. In this paper, we propose a novel safety-aware loss variation that leverages the estimated per-pedestrian criticality scores during training. We exploit the reachability set-based time-to-collision (TTC-RSB) metric from the motion domain along with distance information to account for the worst-case threat quantifying the criticality. Our evaluation results using RetinaNet and FCOS on the nuScenes dataset demonstrate that training the models with our safety-aware loss function mitigates the misdetection of critical pedestrians without sacrificing performance for the general case, i.e., pedestrians outside the safety-critical zone.
Deep neural networks (DNNs) have demonstrated remarkable performance across various tasks, including image and speech recognition. However, maximizing the effectiveness of DNNs requires meticulous optimization of numerous hyperparameters and network parameters through training. Moreover, high-performance DNNs entail many parameters, which consume significant energy during training. In order to overcome these challenges, researchers have turned to spiking neural networks (SNNs), which offer enhanced energy efficiency and biologically plausible data processing capabilities, rendering them highly suitable for sensory data tasks, particularly in neuromorphic data. Despite their advantages, SNNs, like DNNs, are susceptible to various threats, including adversarial examples and backdoor attacks. Yet, the field of SNNs still needs to be explored in terms of understanding and countering these attacks. This paper delves into backdoor attacks in SNNs using neuromorphic datasets and diverse triggers. Specifically, we explore backdoor triggers within neuromorphic data that can manipulate their position and color, providing a broader scope of possibilities than conventional triggers in domains like images. We present various attack strategies, achieving an attack success rate of up to 100% while maintaining a negligible impact on clean accuracy. Furthermore, we assess these attacks' stealthiness, revealing that our most potent attacks possess significant stealth capabilities. Lastly, we adapt several state-of-the-art defenses from the image domain, evaluating their efficacy on neuromorphic data and uncovering instances where they fall short, leading to compromised performance.
Training general robotic policies from heterogeneous data for different tasks is a significant challenge. Existing robotic datasets vary in different modalities such as color, depth, tactile, and proprioceptive information, and collected in different domains such as simulation, real robots, and human videos. Current methods usually collect and pool all data from one domain to train a single policy to handle such heterogeneity in tasks and domains, which is prohibitively expensive and difficult. In this work, we present a flexible approach, dubbed Policy Composition, to combine information across such diverse modalities and domains for learning scene-level and task-level generalized manipulation skills, by composing different data distributions represented with diffusion models. Our method can use task-level composition for multi-task manipulation and be composed with analytic cost functions to adapt policy behaviors at inference time. We train our method on simulation, human, and real robot data and evaluate in tool-use tasks. The composed policy achieves robust and dexterous performance under varying scenes and tasks and outperforms baselines from a single data source in both simulation and real-world experiments. See //liruiw.github.io/policycomp for more details .
The study of UX dark patterns, i.e., UI designs that seek to manipulate user behaviors, often for the benefit of online services, has drawn significant attention in the CHI and CSCW communities in recent years. To complement previous studies in addressing dark patterns from (1) the designer's perspective on education and advocacy for ethical designs; and (2) the policymaker's perspective on new regulations, we propose an end-user-empowerment intervention approach that helps users (1) raise the awareness of dark patterns and understand their underlying design intents; (2) take actions to counter the effects of dark patterns using a web augmentation approach. Through a two-phase co-design study, including 5 co-design workshops (N=12) and a 2-week technology probe study (N=15), we reported findings on the understanding of users' needs, preferences, and challenges in handling dark patterns and investigated the feedback and reactions to users' awareness of and action on dark patterns being empowered in a realistic in-situ setting.
Clarifying questions are an integral component of modern information retrieval systems, directly impacting user satisfaction and overall system performance. Poorly formulated questions can lead to user frustration and confusion, negatively affecting the system's performance. This research addresses the urgent need to identify and leverage key features that contribute to the classification of clarifying questions, enhancing user satisfaction. To gain deeper insights into how different features influence user satisfaction, we conduct a comprehensive analysis, considering a broad spectrum of lexical, semantic, and statistical features, such as question length and sentiment polarity. Our empirical results provide three main insights into the qualities of effective query clarification: (1) specific questions are more effective than generic ones; (2) the subjectivity and emotional tone of a question play a role; and (3) shorter and more ambiguous queries benefit significantly from clarification. Based on these insights, we implement feature-integrated user satisfaction prediction using various classifiers, both traditional and neural-based, including random forest, BERT, and large language models. Our experiments show a consistent and significant improvement, particularly in traditional classifiers, with a minimum performance boost of 45\%. This study presents invaluable guidelines for refining the formulation of clarifying questions and enhancing both user satisfaction and system performance.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.