A main difficulty in actuarial claim size modeling is that there is no simple off-the-shelf distribution that simultaneously provides a good distributional model for the main body and the tail of the data. In particular, covariates may have different effects for small and for large claim sizes. To cope with this problem, we introduce a deep composite regression model whose splicing point is given in terms of a quantile of the conditional claim size distribution rather than a constant. To facilitate M-estimation for such models, we introduce and characterize the class of strictly consistent scoring functions for the triplet consisting a quantile, as well as the lower and upper expected shortfall beyond that quantile. In a second step, this elicitability result is applied to fit deep neural network regression models. We demonstrate the applicability of our approach and its superiority over classical approaches on a real accident insurance data set.
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent uncertainty, such as weather forecasting, medical prognosis, or collision avoidance in autonomous vehicles. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the important difference that the objective is to estimate probabilities rather than predicting the specific outcome. The goal of this work is to investigate probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on classification problems where the probabilities are related to model uncertainty. In the case of problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
The problem of learning functions over spaces of probabilities - or distribution regression - is gaining significant interest in the machine learning community. A key challenge behind this problem is to identify a suitable representation capturing all relevant properties of the underlying functional mapping. A principled approach to distribution regression is provided by kernel mean embeddings, which lifts kernel-induced similarity on the input domain at the probability level. This strategy effectively tackles the two-stage sampling nature of the problem, enabling one to derive estimators with strong statistical guarantees, such as universal consistency and excess risk bounds. However, kernel mean embeddings implicitly hinge on the maximum mean discrepancy (MMD), a metric on probabilities, which may fail to capture key geometrical relations between distributions. In contrast, optimal transport (OT) metrics, are potentially more appealing, as documented by the recent literature on the topic. In this work, we propose the first OT-based estimator for distribution regression. We build on the Sliced Wasserstein distance to obtain an OT-based representation. We study the theoretical properties of a kernel ridge regression estimator based on such representation, for which we prove universal consistency and excess risk bounds. Preliminary experiments complement our theoretical findings by showing the effectiveness of the proposed approach and compare it with MMD-based estimators.
A quasi-score linearity test for continuous and count network autoregressive models is developed. We establish the asymptotic distribution of the test when the network dimension is fixed or increasing, under the null hypothesis of linearity and Pitman's local alternatives. When the parameters are identifiable, the test statistic approximates a chi-square and noncentral chi-square asymptotic distribution, respectively. These results still hold true when the parameters tested belong to the boundary of their space. When we deal with non-identifiable parameters, a suitable test is proposed and its asymptotic distribution is established when the network dimension is fixed. Since, in general, critical values of such test cannot be tabulated, the empirical computation of the p-values is implemented using a feasible bound. Bootstrap approximations are also provided. Moreover, consistency and asymptotic normality of the quasi maximum likelihood estimator is established for continuous and count nonlinear network autoregressions, under standard smoothness conditions. A simulation study and two data examples complement this work.
This paper introduces a Threshold Asymmetric Conditional Autoregressive Range (TACARR) formulation for modeling the daily price ranges of financial assets. It is assumed that the process generating the conditional expected ranges at each time point switches between two regimes, labeled as upward market and downward market states. The disturbance term of the error process is also allowed to switch between two distributions depending on the regime. It is assumed that a self-adjusting threshold component that is driven by the past values of the time series determines the current market regime. The proposed model is able to capture aspects such as asymmetric and heteroscedastic behavior of volatility in financial markets. The proposed model is an attempt at addressing several potential deficits found in existing price range models such as the Conditional Autoregressive Range (CARR), Asymmetric CARR (ACARR), Feedback ACARR (FACARR) and Threshold Autoregressive Range (TARR) models. Parameters of the model are estimated using the Maximum Likelihood (ML) method. A simulation study shows that the ML method performs well in estimating the TACARR model parameters. The empirical performance of the TACARR model was investigated using IBM index data and results show that the proposed model is a good alternative for in-sample prediction and out-of-sample forecasting of volatility. Key Words: Volatility Modeling, Asymmetric Volatility, CARR Models, Regime Switching.
We propose an efficient algorithm for learning mappings between two metric spaces, $\X$ and $\Y$. Our procedure is strongly Bayes-consistent whenever $\X$ and $\Y$ are topologically separable and $\Y$ is "bounded in expectation" (our term; the separability assumption can be somewhat weakened). At this level of generality, ours is the first such learnability result for unbounded loss in the agnostic setting. Our technique is based on metric medoids (a variant of Fr\'echet means) and presents a significant departure from existing methods, which, as we demonstrate, fail to achieve Bayes-consistency on general instance- and label-space metrics. Our proofs introduce the technique of {\em semi-stable compression}, which may be of independent interest.
Functional quantile regression (FQR) is a useful alternative to mean regression for functional data as it provides a comprehensive understanding of how scalar predictors influence the conditional distribution of functional responses. In this article, we study the FQR model for densely sampled, high-dimensional functional data without relying on parametric error or independent stochastic process assumptions, with the focus being on statistical inference under this challenging regime along with scalable implementation. This is achieved by a simple but powerful distributed strategy, in which we first perform separate quantile regression to compute $M$-estimators at each sampling location, and then carry out estimation and inference for the entire coefficient functions by properly exploiting the uncertainty quantification and dependence structures of $M$-estimators. We derive a uniform Bahadur representation and a strong Gaussian approximation result for the $M$-estimators on the discrete sampling grid, leading to dimension reduction and serving as the basis for inference. An interpolation-based estimator with minimax optimality and a Bayesian alternative to improve upon finite sample performance are discussed. Large sample properties for point and simultaneous interval estimators are established. The obtained minimax optimal rate under the FQR model shows an interesting phase transition phenomenon that has been previously observed in functional mean regression. The proposed methods are illustrated via simulations and an application to a mass spectrometry proteomics dataset.
Generalization beyond a training dataset is a main goal of machine learning, but theoretical understanding of generalization remains an open problem for many models. The need for a new theory is exacerbated by recent observations in deep neural networks where overparameterization leads to better performance, contradicting the conventional wisdom from classical statistics. In this paper, we investigate generalization error for kernel regression, which, besides being a popular machine learning method, also includes infinitely overparameterized neural networks trained with gradient descent. We use techniques from statistical mechanics to derive an analytical expression for generalization error applicable to any kernel or data distribution. We present applications of our theory to real and synthetic datasets, and for many kernels including those that arise from training deep neural networks in the infinite-width limit. We elucidate an inductive bias of kernel regression to explain data with "simple functions", which are identified by solving a kernel eigenfunction problem on the data distribution. This notion of simplicity allows us to characterize whether a kernel is compatible with a learning task, facilitating good generalization performance from a small number of training examples. We show that more data may impair generalization when noisy or not expressible by the kernel, leading to non-monotonic learning curves with possibly many peaks. To further understand these phenomena, we turn to the broad class of rotation invariant kernels, which is relevant to training deep neural networks in the infinite-width limit, and present a detailed mathematical analysis of them when data is drawn from a spherically symmetric distribution and the number of input dimensions is large.
In real word applications, data generating process for training a machine learning model often differs from what the model encounters in the test stage. Understanding how and whether machine learning models generalize under such distributional shifts have been a theoretical challenge. Here, we study generalization in kernel regression when the training and test distributions are different using methods from statistical physics. Using the replica method, we derive an analytical formula for the out-of-distribution generalization error applicable to any kernel and real datasets. We identify an overlap matrix that quantifies the mismatch between distributions for a given kernel as a key determinant of generalization performance under distribution shift. Using our analytical expressions we elucidate various generalization phenomena including possible improvement in generalization when there is a mismatch. We develop procedures for optimizing training and test distributions for a given data budget to find best and worst case generalizations under the shift. We present applications of our theory to real and synthetic datasets and for many kernels. We compare results of our theory applied to Neural Tangent Kernel with simulations of wide networks and show agreement. We analyze linear regression in further depth.
It is well established that migratory birds in general have advanced their arrival times in spring, and in this paper we investigate potential ways of enhancing the level of detail in future phenological analyses. We perform single as well as multiple species analyses, using linear models on empirical quantiles, non-parametric quantile regression and likelihood-based parametric quantile regression with asymmetric Laplace distributed error terms. We conclude that non-parametric quantile regression appears most suited for single as well as multiple species analyses.
Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression