亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel method for the reconstruction of high-resolution temporal images in dynamic tomographic imaging, particularly for discrete objects with smooth boundaries that vary over time. Addressing the challenge of limited measurements per time point, we propose a technique that synergistically incorporates spatial and temporal information of the dynamic objects. This is achieved through the application of the level-set method for image segmentation and the representation of motion via a sinusoidal basis. The result is a computationally efficient and easily optimizable variational framework that enables the reconstruction of high-quality 2D or 3D image sequences with a single projection per frame. Compared to current methods, our proposed approach demonstrates superior performance on both synthetic and pseudo-dynamic real X-ray tomography datasets. The implications of this research extend to improved visualization and analysis of dynamic processes in tomographic imaging, finding potential applications in diverse scientific and industrial domains.

相關內容

This paper presents a comprehensive survey of low-light image and video enhancement, addressing two primary challenges in the field. The first challenge is the prevalence of mixed over-/under-exposed images, which are not adequately addressed by existing methods. In response, this work introduces two enhanced variants of the SICE dataset: SICE_Grad and SICE_Mix, designed to better represent these complexities. The second challenge is the scarcity of suitable low-light video datasets for training and testing. To address this, the paper introduces the Night Wenzhou dataset, a large-scale, high-resolution video collection that features challenging fast-moving aerial scenes and streetscapes with varied illuminations and degradation. This study also conducts an extensive analysis of key techniques and performs comparative experiments using the proposed and current benchmark datasets. The survey concludes by highlighting emerging applications, discussing unresolved challenges, and suggesting future research directions within the LLIE community. The datasets are available at //github.com/ShenZheng2000/LLIE_Survey.

We present a novel adversarial model for authentication systems that use gait patterns recorded by the inertial measurement unit (IMU) built into smartphones. The attack idea is inspired by and named after the concept of a dictionary attack on knowledge (PIN or password) based authentication systems. In particular, this work investigates whether it is possible to build a dictionary of IMUGait patterns and use it to launch an attack or find an imitator who can actively reproduce IMUGait patterns that match the target's IMUGait pattern. Nine physically and demographically diverse individuals walked at various levels of four predefined controllable and adaptable gait factors (speed, step length, step width, and thigh-lift), producing 178 unique IMUGait patterns. Each pattern attacked a wide variety of user authentication models. The deeper analysis of error rates (before and after the attack) challenges the belief that authentication systems based on IMUGait patterns are the most difficult to spoof; further research is needed on adversarial models and associated countermeasures.

This paper proposes a novel unsupervised domain adaption (UDA) method based on contrastive bi-projector (CBP), which can improve the existing UDA methods. It is called CBPUDA here, which effectively promotes the feature extractors (FEs) to reduce the generation of ambiguous features for classification and domain adaption. The CBP differs from traditional bi-classifier-based methods at that these two classifiers are replaced with two projectors of performing a mapping from the input feature to two distinct features. These two projectors and the FEs in the CBPUDA can be trained adversarially to obtain more refined decision boundaries so that it can possess powerful classification performance. Two properties of the proposed loss function are analyzed here. The first property is to derive an upper bound of joint prediction entropy, which is used to form the proposed loss function, contrastive discrepancy (CD) loss. The CD loss takes the advantages of the contrastive learning and the bi-classifier. The second property is to analyze the gradient of the CD loss and then overcome the drawback of the CD loss. The result of the second property is utilized in the development of the gradient scaling (GS) scheme in this paper. The GS scheme can be exploited to tackle the unstable problem of the CD loss because training the CBPUDA requires using contrastive learning and adversarial learning at the same time. Therefore, using the CD loss with the GS scheme overcomes the problem mentioned above to make features more compact for intra-class and distinguishable for inter-class. Experimental results express that the CBPUDA is superior to conventional UDA methods under consideration in this paper for UDA and fine-grained UDA tasks.

Despite the wide variety of methods developed for synthetic image attribution, most of them can only attribute images generated by models or architectures included in the training set and do not work with unknown architectures, hindering their applicability in real-world scenarios. In this paper, we propose a verification framework that relies on a Siamese Network to address the problem of open-set attribution of synthetic images to the architecture that generated them. We consider two different settings. In the first setting, the system determines whether two images have been produced by the same generative architecture or not. In the second setting, the system verifies a claim about the architecture used to generate a synthetic image, utilizing one or multiple reference images generated by the claimed architecture. The main strength of the proposed system is its ability to operate in both closed and open-set scenarios so that the input images, either the query and reference images, can belong to the architectures considered during training or not. Experimental evaluations encompassing various generative architectures such as GANs, diffusion models, and transformers, focusing on synthetic face image generation, confirm the excellent performance of our method in both closed and open-set settings, as well as its strong generalization capabilities.

This paper presents a novel approach to network pruning, targeting block pruning in deep neural networks for edge computing environments. Our method diverges from traditional techniques that utilize proxy metrics, instead employing a direct block removal strategy to assess the impact on classification accuracy. This hands-on approach allows for an accurate evaluation of each block's importance. We conducted extensive experiments on CIFAR-10, CIFAR-100, and ImageNet datasets using ResNet architectures. Our results demonstrate the efficacy of our method, particularly on large-scale datasets like ImageNet with ResNet50, where it excelled in reducing model size while retaining high accuracy, even when pruning a significant portion of the network. The findings underscore our method's capability in maintaining an optimal balance between model size and performance, especially in resource-constrained edge computing scenarios.

We present a novel technique for modulating the appearance frequency of a few tokens within a dataset for encoding an invisible watermark that can be used to protect ownership rights upon data. We develop optimal as well as fast heuristic algorithms for creating and verifying such watermarks. We also demonstrate the robustness of our technique against various attacks and derive analytical bounds for the false positive probability of erroneously detecting a watermark on a dataset that does not carry it. Our technique is applicable to both single dimensional and multidimensional datasets, is independent of token type, allows for a fine control of the introduced distortion, and can be used in a variety of use cases that involve buying and selling data in contemporary data marketplaces.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司