亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In fair classification, it is common to train a model, and to compare and correct subgroup-specific error rates for disparities. However, even if a model's classification decisions satisfy a fairness metric, it is not necessarily the case that these decisions are equally confident. This becomes clear if we measure variance: We can fix everything in the learning process except the subset of training data, train multiple models, measure (dis)agreement in predictions for each test example, and interpret disagreement to mean that the learning process is more unstable with respect to its classification decision. Empirically, some decisions can in fact be so unstable that they are effectively arbitrary. To reduce this arbitrariness, we formalize a notion of self-consistency of a learning process, develop an ensembling algorithm that provably increases self-consistency, and empirically demonstrate its utility to often improve both fairness and accuracy. Further, our evaluation reveals a startling observation: Applying ensembling to common fair classification benchmarks can significantly reduce subgroup error rate disparities, without employing common pre-, in-, or post-processing fairness interventions. Taken together, our results indicate that variance, particularly on small datasets, can muddle the reliability of conclusions about fairness. One solution is to develop larger benchmark tasks. To this end, we release a toolkit that makes the Home Mortgage Disclosure Act datasets easily usable for future research.

相關內容

Deep learning in general domains has constantly been extended to domain-specific tasks requiring the recognition of fine-grained characteristics. However, real-world applications for fine-grained tasks suffer from two challenges: a high reliance on expert knowledge for annotation and necessity of a versatile model for various downstream tasks in a specific domain (e.g., prediction of categories, bounding boxes, or pixel-wise annotations). Fortunately, the recent self-supervised learning (SSL) is a promising approach to pretrain a model without annotations, serving as an effective initialization for any downstream tasks. Since SSL does not rely on the presence of annotation, in general, it utilizes the large-scale unlabeled dataset, referred to as an open-set. In this sense, we introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available, as well as the fine-grained target dataset, during a pretraining phase. In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset. Hence, we propose SimCore algorithm to sample a coreset, the subset of an open-set that has a minimum distance to the target dataset in the latent space. We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings, including eleven fine-grained datasets and seven open-sets in various downstream tasks.

This paper studies a house allocation problem in a networked housing market, where agents can invite others to join the system in order to enrich their options. Top Trading Cycle is a well-known matching mechanism that achieves a set of desirable properties in a market without invitations. However, under a tree-structured networked market, existing agents have to strategically propagate the barter market as their invitees may compete in the same house with them. Our impossibility result shows that TTC cannot work properly in a networked housing market. Hence, we characterize the possible competitions between inviters and invitees, which lead agents to fail to refer others truthfully (strategy-proof). We then present a novel mechanism based on TTC, avoiding the aforementioned competition to ensure all agents report preference and propagate the barter market truthfully. Unlike the existing mechanisms, the agents' preferences are less restricted under our mechanism. Furthermore, we show by simulations that our mechanism outperforms the existing matching mechanisms in terms of the number of swaps and agents' satisfaction.

Likelihood-based inferences have been remarkably successful in wide-spanning application areas. However, even after due diligence in selecting a good model for the data at hand, there is inevitably some amount of model misspecification: outliers, data contamination or inappropriate parametric assumptions such as Gaussianity mean that most models are at best rough approximations of reality. A significant practical concern is that for certain inferences, even small amounts of model misspecification may have a substantial impact; a problem we refer to as brittleness. This article attempts to address the brittleness problem in likelihood-based inferences by choosing the most model friendly data generating process in a discrepancy-based neighbourhood of the empirical measure. This leads to a new Optimistically Weighted Likelihood (OWL), which robustifies the original likelihood by formally accounting for a small amount of model misspecification. Focusing on total variation (TV) neighborhoods, we study theoretical properties, develop inference algorithms and illustrate the methodology in applications to mixture models and regression.

Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based bladder tissue classification when annotations are limited in multi-domain data. The dataset is available at //zenodo.org/record/7741476#.ZBQUK7TMJ6k

Out-of-distribution (OOD) detection aims at enhancing standard deep neural networks to distinguish anomalous inputs from original training data. Previous progress has introduced various approaches where the in-distribution training data and even several OOD examples are prerequisites. However, due to privacy and security, auxiliary data tends to be impractical in a real-world scenario. In this paper, we propose a data-free method without training on natural data, called Class-Conditional Impressions Reappearing (C2IR), which utilizes image impressions from the fixed model to recover class-conditional feature statistics. Based on that, we introduce Integral Probability Metrics to estimate layer-wise class-conditional deviations and obtain layer weights by Measuring Gradient-based Importance (MGI). The experiments verify the effectiveness of our method and indicate that C2IR outperforms other post-hoc methods and reaches comparable performance to the full access (ID and OOD) detection method, especially in the far-OOD dataset (SVHN).

Recent years have witnessed a remarkable success of large deep learning models. However, training these models is challenging due to high computational costs, painfully slow convergence, and overfitting issues. In this paper, we present Deep Incubation, a novel approach that enables the efficient and effective training of large models by dividing them into smaller sub-modules that can be trained separately and assembled seamlessly. A key challenge for implementing this idea is to ensure the compatibility of the independently trained sub-modules. To address this issue, we first introduce a global, shared meta model, which is leveraged to implicitly link all the modules together, and can be designed as an extremely small network with negligible computational overhead. Then we propose a module incubation algorithm, which trains each sub-module to replace the corresponding component of the meta model and accomplish a given learning task. Despite the simplicity, our approach effectively encourages each sub-module to be aware of its role in the target large model, such that the finally-learned sub-modules can collaborate with each other smoothly after being assembled. Empirically, our method outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% on ImageNet or achieves similar performance with 4x less training time. Notably, the gains are significant for downstream tasks as well (e.g., object detection and image segmentation on COCO and ADE20K). Code is available at //github.com/LeapLabTHU/Deep-Incubation.

Text classifiers have promising applications in high-stake tasks such as resume screening and content moderation. These classifiers must be fair and avoid discriminatory decisions by being invariant to perturbations of sensitive attributes such as gender or ethnicity. However, there is a gap between human intuition about these perturbations and the formal similarity specifications capturing them. While existing research has started to address this gap, current methods are based on hardcoded word replacements, resulting in specifications with limited expressivity or ones that fail to fully align with human intuition (e.g., in cases of asymmetric counterfactuals). This work proposes novel methods for bridging this gap by discovering expressive and intuitive individual fairness specifications. We show how to leverage unsupervised style transfer and GPT-3's zero-shot capabilities to automatically generate expressive candidate pairs of semantically similar sentences that differ along sensitive attributes. We then validate the generated pairs via an extensive crowdsourcing study, which confirms that a lot of these pairs align with human intuition about fairness in the context of toxicity classification. Finally, we show how limited amounts of human feedback can be leveraged to learn a similarity specification that can be used to train downstream fairness-aware models.

The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: //github.com/lancopku/well-classified-examples-are-underestimated.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司