亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal model reduction for large-scale linear dynamical systems is studied. In contrast to most existing works, the systems under consideration are not required to be stable, neither in discrete nor in continuous time. As a consequence, the underlying rational transfer functions are allowed to have poles in general domains in the complex plane. In particular, this covers the case of specific conservative partial differential equations such as the linear Schr\"odinger and the undamped linear wave equation with spectra on the imaginary axis. By an appropriate modification of the classical continuous time Hardy space $\mathcal{H}_2$, a new $\mathcal{H}_2$ like optimal model reduction problem is introduced and first order optimality conditions are derived. As in the classical $\mathcal{H}_2$ case, these conditions exhibit a rational Hermite interpolation structure for which an iterative model reduction algorithm is proposed. Numerical examples demonstrate the effectiveness of the new method.

相關內容

Human behavior is conditioned by codes and norms that constrain action. Rules, ``manners,'' laws, and moral imperatives are examples of classes of constraints that govern human behavior. These systems of constraints are "messy:" individual constraints are often poorly defined, what constraints are relevant in a particular situation may be unknown or ambiguous, constraints interact and conflict with one another, and determining how to act within the bounds of the relevant constraints may be a significant challenge, especially when rapid decisions are needed. Despite such messiness, humans incorporate constraints in their decisions robustly and rapidly. General, artificially-intelligent agents must also be able to navigate the messiness of systems of real-world constraints in order to behave predictability and reliably. In this paper, we characterize sources of complexity in constraint processing for general agents and describe a computational-level analysis for such constraint compliance. We identify key algorithmic requirements based on the computational-level analysis and outline an initial, exploratory implementation of a general approach to constraint compliance.

We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.

We consider finding flat, local minimizers by adding average weight perturbations. Given a nonconvex function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ and a $d$-dimensional distribution $\mathcal{P}$ which is symmetric at zero, we perturb the weight of $f$ and define $F(W) = \mathbb{E}[f({W + U})]$, where $U$ is a random sample from $\mathcal{P}$. This injection induces regularization through the Hessian trace of $f$ for small, isotropic Gaussian perturbations. Thus, the weight-perturbed function biases to minimizers with low Hessian trace. Several prior works have studied settings related to this weight-perturbed function by designing algorithms to improve generalization. Still, convergence rates are not known for finding minima under the average perturbations of the function $F$. This paper considers an SGD-like algorithm that injects random noise before computing gradients while leveraging the symmetry of $\mathcal{P}$ to reduce variance. We then provide a rigorous analysis, showing matching upper and lower bounds of our algorithm for finding an approximate first-order stationary point of $F$ when the gradient of $f$ is Lipschitz-continuous. We empirically validate our algorithm for several image classification tasks with various architectures. Compared to sharpness-aware minimization, we note a 12.6% and 7.8% drop in the Hessian trace and top eigenvalue of the found minima, respectively, averaged over eight datasets. Ablation studies validate the benefit of the design of our algorithm.

Predicting the future trajectories of nearby objects plays a pivotal role in Robotics and Automation such as autonomous driving. While learning-based trajectory prediction methods have achieved remarkable performance on public benchmarks, the generalization ability of these approaches remains questionable. The poor generalizability on unseen domains, a well-recognized defect of data-driven approaches, can potentially harm the real-world performance of trajectory prediction models. We are thus motivated to improve generalization ability of models instead of merely pursuing high accuracy on average. Due to the lack of benchmarks for quantifying the generalization ability of trajectory predictors, we first construct a new benchmark called argoverse-shift, where the data distributions of domains are significantly different. Using this benchmark for evaluation, we identify that the domain shift problem seriously hinders the generalization of trajectory predictors since state-of-the-art approaches suffer from severe performance degradation when facing those out-of-distribution scenes. To enhance the robustness of models against domain shift problem, we propose a plug-and-play strategy for domain normalization in trajectory prediction. Our strategy utilizes the Frenet coordinate frame for modeling and can effectively narrow the domain gap of different scenes caused by the variety of road geometry and topology. Experiments show that our strategy noticeably boosts the prediction performance of the state-of-the-art in domains that were previously unseen to the models, thereby improving the generalization ability of data-driven trajectory prediction methods.

Inference and simulation in the context of high-dimensional dynamical systems remain computationally challenging problems. Some form of dimensionality reduction is required to make the problem tractable in general. In this paper, we propose a novel approximate Gaussian filtering and smoothing method which propagates low-rank approximations of the covariance matrices. This is accomplished by projecting the Lyapunov equations associated with the prediction step to a manifold of low-rank matrices, which are then solved by a recently developed, numerically stable, dynamical low-rank integrator. Meanwhile, the update steps are made tractable by noting that the covariance update only transforms the column space of the covariance matrix, which is low-rank by construction. The algorithm differentiates itself from existing ensemble-based approaches in that the low-rank approximations of the covariance matrices are deterministic, rather than stochastic. Crucially, this enables the method to reproduce the exact Kalman filter as the low-rank dimension approaches the true dimensionality of the problem. Our method reduces computational complexity from cubic (for the Kalman filter) to \emph{quadratic} in the state-space size in the worst-case, and can achieve \emph{linear} complexity if the state-space model satisfies certain criteria. Through a set of experiments in classical data-assimilation and spatio-temporal regression, we show that the proposed method consistently outperforms the ensemble-based methods in terms of error in the mean and covariance with respect to the exact Kalman filter. This comes at no additional cost in terms of asymptotic computational complexity.

Pini and Vantini (2017) introduced the interval-wise testing procedure which performs local inference for functional data defined on an interval domain, where the output is an adjusted p-value function that controls for type I errors. We extend this idea to a general setting where domain is a Riemannian manifolds. This requires new methodology such as how to define adjustment sets on product manifolds and how to approximate the test statistic when the domain has non-zero curvature. We propose to use permutation tests for inference and apply the procedure in three settings: a simulation on a "chameleon-shaped" manifold and two applications related to climate change where the manifolds are a complex subset of $S^2$ and $S^2 \times S^1$, respectively. We note the tradeoff between type I and type II errors: increasing the adjustment set reduces the type I error but also results in smaller areas of significance. However, some areas still remain significant even at maximal adjustment.

Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a $\varphi$-divergence to an empirical distribution. However, the use of $\varphi$-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.

In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.

This paper presents a novel derivation of the direct parametrisation method for invariant manifolds able to build simulation-free reduced-order models for nonlinear piezoelectric structures, with a particular emphasis on applications to Micro-Electro-Mechanical-Systems. The constitutive model adopted accounts for the hysteretic and electrostrictive response of the piezoelectric material by resorting to the Landau-Devonshire theory of ferroelectrics. Results are validated with full-order simulations operated with a harmonic balance finite element method to highlight the reliability of the proposed reduction procedure. Numerical results show a remarkable gain in terms of computing time as a result of the dimensionality reduction process over low dimensional invariant sets. Results are also compared with experimental data to highlight the remarkable benefits of the proposed model order reduction technique.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

北京阿比特科技有限公司