亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of smart manufacturing, data-driven machinery health management has received a growing attention. As one of the most popular methods in machinery health management, deep learning (DL) has achieved remarkable successes. However, due to the issues of limited samples and poor separability of different cavitation states of acoustic signals, which greatly hinder the eventual performance of DL modes for cavitation intensity recognition and cavitation detection. In this work, a novel multi-task learning framework for simultaneous cavitation detection and cavitation intensity recognition framework using 1-D double hierarchical residual networks (1-D DHRN) is proposed for analyzing valves acoustic signals. Firstly, a data augmentation method based on sliding window with fast Fourier transform (Swin-FFT) is developed to alleviate the small-sample issue confronted in this study. Secondly, a 1-D double hierarchical residual block (1-D DHRB) is constructed to capture sensitive features from the frequency domain acoustic signals of valve. Then, a new structure of 1-D DHRN is proposed. Finally, the devised 1-D DHRN is evaluated on two datasets of valve acoustic signals without noise (Dataset 1 and Dataset 2) and one dataset of valve acoustic signals with realistic surrounding noise (Dataset 3) provided by SAMSON AG (Frankfurt). Our method has achieved state-of-the-art results. The prediction accurcies of 1-D DHRN for cavitation intensitys recognition are as high as 93.75%, 94.31% and 100%, which indicates that 1-D DHRN outperforms other DL models and conventional methods. At the same time, the testing accuracies of 1-D DHRN for cavitation detection are as high as 97.02%, 97.64% and 100%. In addition, 1-D DHRN has also been tested for different frequencies of samples and shows excellent results for frequency of samples that mobile phones can accommodate.

相關內容

Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversary's benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor can be utilised to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an "easy" instance of SVP. It is important to note that the work on ideal SVP does not break Ring-LWE, since its security reduction is from worst case ideal SVP to average case Ring-LWE, and is one way.

Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the $\ell_{p}$ type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at //github.com/yaoyx689/AMM_NRR.

Despite the rapid advance of unsupervised anomaly detection, existing methods require to train separate models for different objects. In this work, we present UniAD that accomplishes anomaly detection for multiple classes with a unified framework. Under such a challenging setting, popular reconstruction networks may fall into an "identical shortcut", where both normal and anomalous samples can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we make three improvements. First, we revisit the formulations of fully-connected layer, convolutional layer, as well as attention layer, and confirm the important role of query embedding (i.e., within attention layer) in preventing the network from learning the shortcut. We therefore come up with a layer-wise query decoder to help model the multi-class distribution. Second, we employ a neighbor masked attention module to further avoid the information leak from the input feature to the reconstructed output feature. Third, we propose a feature jittering strategy that urges the model to recover the correct message even with noisy inputs. We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass the state-of-the-art alternatives by a sufficiently large margin. For example, when learning a unified model for 15 categories in MVTec-AD, we surpass the second competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and anomaly localization (from 89.5% to 96.8%). Code will be made publicly available.

This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR), i.e., the number of successfully received packets sent by end devices (EDs) in a long-range wide-area network (LoRaWAN). Setting the transmission parameters significantly affects the PDR. Employing reinforcement learning (RL), we propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner. We model the resource allocation problem as a multi-armed bandit (MAB) and then address it by proposing a two-phase algorithm named MIX-MAB, which consists of the exponential weights for exploration and exploitation (EXP3) and successive elimination (SE) algorithms. We evaluate the MIX-MAB performance through simulation results and compare it with other existing approaches. Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detection. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.

北京阿比特科技有限公司