亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to convenience, open-source software is widely used. For beneficial reasons, open-source maintainers often fix the vulnerabilities silently, exposing their users unaware of the updates to threats. Previous works all focus on black-box binary detection of the silent dependency alerts that suffer from high false-positive rates. Open-source software users need to analyze and explain AI prediction themselves. Explainable AI becomes remarkable as a complementary of black-box AI models, providing details in various forms to explain AI decisions. Noticing there is still no technique that can discover silent dependency alert on time, in this work, we propose a framework using an encoder-decoder model with a binary detector to provide explainable silent dependency alert prediction. Our model generates 4 types of vulnerability key aspects including vulnerability type, root cause, attack vector, and impact to enhance the trustworthiness and users' acceptance to alert prediction. By experiments with several models and inputs, we confirm CodeBERT with both commit messages and code changes achieves the best results. Our user study shows that explainable alert predictions can help users find silent dependency alert more easily than black-box predictions. To the best of our knowledge, this is the first research work on the application of Explainable AI in silent dependency alert prediction, which opens the door of the related domains.

相關內容

Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop series. From this workshop, a critical conclusion that the DOE BER and ASCR community came to is the requirement to develop a new paradigm for Earth system predictability focused on enabling artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx. The BER's `Model-Experimentation', ModEx, is an iterative approach that enables process models to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect measurement and observation data, which are subsequently used to parameterize, drive, and test model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP workshop series. This paper discusses the topic of the `AI Architectures and Co-design' session and associated outcomes. The AI Architectures and Co-design session included two invited talks, two plenary discussion panels, and three breakout rooms that covered specific topics, including: (1) DOE HPC Systems, (2) Cloud HPC Systems, and (3) Edge computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives on potential research in this co-design area that can be achieved by synergies with the other 16 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled sensor integration into earth system measurements and observations. Such perspectives are a distinguishing aspect of this paper.

Battery-less technology evolved to replace battery technology. Non-volatile memory (NVM) based processors were explored to store the program state during a power failure. The energy stored in a capacitor is used for a backup during a power failure. Since the size of a capacitor is fixed and limited, the available energy in a capacitor is also limited and fixed. Thus, the capacitor energy is insufficient to store the entire program state during frequent power failures. This paper proposes an architecture that assures safe backup of volatile contents during a power failure under energy constraints. Using a proposed dirty block table (DBT) and writeback queue (WBQ), this work limits the number of dirty blocks in the L1 cache at any given time. We further conducted a set of experiments by varying the parameter sizes to help the user make appropriate design decisions concerning their energy requirements. The proposed architecture decreases energy consumption by 17.56%, the number of writes to NVM by 18.97% at LLC, and 10.66% at a main-memory level compared to baseline architecture.

Machine Translation systems can produce different types of errors, some of which are characterized as critical or catastrophic due to the specific negative impact that they can have on users. In this paper we focus on one type of critical error: added toxicity. We evaluate and analyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS, over 472k sentences, covering 13 demographic axes) from English into 164 languages. An automatic toxicity evaluation shows that added toxicity across languages varies from 0% to 5%. The output languages with the most added toxicity tend to be low-resource ones, and the demographic axes with the most added toxicity include sexual orientation, gender and sex, and ability. We also perform human evaluation on a subset of 8 translation directions, confirming the prevalence of true added toxicity. We use a measurement of the amount of source contribution to the translation, where a low source contribution implies hallucination, to interpret what causes toxicity. Making use of the input attributions allows us to explain toxicity, because the source contributions significantly correlate with toxicity for 84% of languages studied. Given our findings, our recommendations to reduce added toxicity are to curate training data to avoid mistranslations, mitigate hallucination and check unstable translations.

Recently, we can notice a transition to data-driven techniques in Automated Program Repair (APR), in particular towards deep neural networks. This entails training on hundreds of thousands or even millions of non-executable code fragments. We would like to bring more attention to an aspect of code often neglected in Neural Program Repair (NPR), namely its execution. Code execution has several significant advantages. It allows for test-based evaluation of candidate fixes and can provide valuable information to aid repair. In this work we present a fully executable dataset of 450,000 small buggy/fixed program pairs originally submitted to programming competition websites written in eight different programming languages. Along with the dataset we provide infrastructure to compile, safely execute and test programs as well as fine-grained bug-type labels. To give a point of reference, we provide basic evaluation results for two baselines, one based on a generate-and-validate approach and one on deep learning. With this dataset we follow several goals: we want to lift Neural Program Repair beyond fully static code representations, foster the use of execution-based features and, by including several different languages, counterbalance the predominance of Java in the current landscape of APR datasets and benchmarks.

We propose and release a new vulnerable source code dataset. We curate the dataset by crawling security issue websites, extracting vulnerability-fixing commits and source codes from the corresponding projects. Our new dataset contains 150 CWEs, 26,635 vulnerable functions, and 352,606 non-vulnerable functions extracted from 7,861 commits. Our dataset covers 305 more projects than all previous datasets combined. We show that increasing the diversity and volume of training data improves the performance of deep learning models for vulnerability detection. Combining our new dataset with previous datasets, we present an analysis of the challenges and promising research directions of using deep learning for detecting software vulnerabilities. We study 11 model architectures belonging to 4 families. Our results show that deep learning is still not ready for vulnerability detection, due to high false positive rate, low F1 score, and difficulty of detecting hard CWEs. In particular, we demonstrate an important generalization challenge for the deployment of deep learning-based models. However, we also identify hopeful future research directions. We demonstrate that large language models (LLMs) are the future for vulnerability detection, outperforming Graph Neural Networks (GNNs) with manual feature engineering. Moreover, developing source code specific pre-training objectives is a promising research direction to improve the vulnerability detection performance.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.

北京阿比特科技有限公司