亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning to collaborate has witnessed significant progress in multi-agent reinforcement learning (MARL). However, promoting coordination among agents and enhancing exploration capabilities remain challenges. In multi-agent environments, interactions between agents are limited in specific situations. Effective collaboration between agents thus requires a nuanced understanding of when and how agents' actions influence others. To this end, in this paper, we propose a novel MARL algorithm named Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning (SCIC), which incorporates a novel Intrinsic reward mechanism based on a new cooperation criterion measured by situation-dependent causal influence among agents. Our approach aims to detect inter-agent causal influences in specific situations based on the criterion using causal intervention and conditional mutual information. This effectively assists agents in exploring states that can positively impact other agents, thus promoting cooperation between agents. The resulting update links coordinated exploration and intrinsic reward distribution, which enhance overall collaboration and performance. Experimental results on various MARL benchmarks demonstrate the superiority of our method compared to state-of-the-art approaches.

相關內容

As a key to social good, continuous sign language recognition (CSLR) aims to promote active and accessible communication for the hearing impaired. Current CSLR research adopts a cross-modality alignment scheme to learn the mapping relationship between "video clip-textual gloss". However, this local alignment method, especially with weak data annotation, ignores the contextual information of modalities and directly reduces the generalization of visual features. To this end, we propose a novel Denoising-Diffusion global Alignment scheme (DDA), which focuses on modeling the mapping of the "entire video-gloss sequence". DDA consists of a partial noising process strategy and a denoising-diffusion autoencoder. The former is used to achieve efficient guidance of the text modality to the visual modality; the latter learns the global alignment information of the two modalities in a denoising manner. Our DDA confirms the feasibility of diffusion models for visual representation learning in CSLR. Experiments on three public benchmarks demonstrate that our method achieves state-of-the-art performances. Furthermore, the proposed method can be a plug-and-play optimization to generalize other CSLR methods.

This paper addresses the challenge of cross-domain few-shot object detection (CD-FSOD), aiming to develop an accurate object detector for novel domains with minimal labeled examples. While transformer-based open-set detectors e.g., DE-ViT~\cite{zhang2023detect} have excelled in both open-vocabulary object detection and traditional few-shot object detection, detecting categories beyond those seen during training, we thus naturally raise two key questions: 1) can such open-set detection methods easily generalize to CD-FSOD? 2) If no, how to enhance the results of open-set methods when faced with significant domain gaps? To address the first question, we introduce several metrics to quantify domain variances and establish a new CD-FSOD benchmark with diverse domain metric values. Some State-Of-The-Art (SOTA) open-set object detection methods are evaluated on this benchmark, with evident performance degradation observed across out-of-domain datasets. This indicates the failure of adopting open-set detectors directly for CD-FSOD. Sequentially, to overcome the performance degradation issue and also to answer the second proposed question, we endeavor to enhance the vanilla DE-ViT. With several novel components including finetuning, a learnable prototype module, and a lightweight attention module, we present an improved Cross-Domain Vision Transformer for CD-FSOD (CD-ViTO). Experiments show that our CD-ViTO achieves impressive results on both out-of-domain and in-domain target datasets, establishing new SOTAs for both CD-FSOD and FSOD. All the datasets, codes, and models will be released to the community.

Due to the inability to receive signals from the Global Navigation Satellite System (GNSS) in extreme conditions, achieving accurate and robust navigation for Unmanned Aerial Vehicles (UAVs) is a challenging task. Recently emerged, vision-based navigation has been a promising and feasible alternative to GNSS-based navigation. However, existing vision-based techniques are inadequate in addressing flight deviation caused by environmental disturbances and inaccurate position predictions in practical settings. In this paper, we present a novel angle robustness navigation paradigm to deal with flight deviation in point-to-point navigation tasks. Additionally, we propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module to accurately predict direction angles for high-precision navigation. To evaluate the vision-based navigation methods, we collect a new dataset termed as UAV_AR368. Furthermore, we design the Simulation Flight Testing Instrument (SFTI) using Google Earth to simulate different flight environments, thereby reducing the expenses associated with real flight testing. Experiment results demonstrate that the proposed model outperforms the state-of-the-art by achieving improvements of 26.0% and 45.6% in the success rate of arrival under ideal and disturbed circumstances, respectively.

Recently, neural networks have proven to be effective in performing speech coding task at low bitrates. However, under-utilization of intra-frame correlations and the error of quantizer specifically degrade the reconstructed audio quality. To improve the coding quality, we present an end-to-end neural speech codec, namely CBRC (Convolutional and Bidirectional Recurrent neural Codec). An interleaved structure using 1D-CNN and Intra-BRNN is designed to exploit the intra-frame correlations more efficiently. Furthermore, Group-wise and Beam-search Residual Vector Quantizer (GB-RVQ) is used to reduce the quantization noise. CBRC encodes audio every 20ms with no additional latency, which is suitable for real-time communication. Experimental results demonstrate the superiority of the proposed codec when comparing CBRC at 3kbps with Opus at 12kbps.

Enhancing accurate molecular property prediction relies on effective and proficient representation learning. It is crucial to incorporate diverse molecular relationships characterized by multi-similarity (self-similarity and relative similarities) between molecules. However, current molecular representation learning methods fall short in exploring multi-similarity and often underestimate the complexity of relationships between molecules. Additionally, previous multi-similarity approaches require the specification of positive and negative pairs to attribute distinct predefined weights to different relative similarities, which can introduce potential bias. In this work, we introduce Graph Multi-Similarity Learning for Molecular Property Prediction (GraphMSL) framework, along with a novel approach to formulate a generalized multi-similarity metric without the need to define positive and negative pairs. In each of the chemical modality spaces (e.g.,molecular depiction image, fingerprint, NMR, and SMILES) under consideration, we first define a self-similarity metric (i.e., similarity between an anchor molecule and another molecule), and then transform it into a generalized multi-similarity metric for the anchor through a pair weighting function. GraphMSL validates the efficacy of the multi-similarity metric across MoleculeNet datasets. Furthermore, these metrics of all modalities are integrated into a multimodal multi-similarity metric, which showcases the potential to improve the performance. Moreover, the focus of the model can be redirected or customized by altering the fusion function. Last but not least, GraphMSL proves effective in drug discovery evaluations through post-hoc analyses of the learnt representations.

Due to strong capabilities in conducting fluent, multi-turn conversations with users, Large Language Models (LLMs) have the potential to further improve the performance of Conversational Recommender System (CRS). Unlike the aimless chit-chat that LLM excels at, CRS has a clear target. So it is imperative to control the dialogue flow in the LLM to successfully recommend appropriate items to the users. Furthermore, user feedback in CRS can assist the system in better modeling user preferences, which has been ignored by existing studies. However, simply prompting LLM to conduct conversational recommendation cannot address the above two key challenges. In this paper, we propose Multi-Agent Conversational Recommender System (MACRS) which contains two essential modules. First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents. This cooperative multi-agent framework will generate various candidate responses based on different dialogue acts and then choose the most appropriate response as the system response, which can help MACRS plan suitable dialogue acts. Second, we propose a user feedback-aware reflection mechanism which leverages user feedback to reason errors made in previous turns to adjust the dialogue act planning, and higher-level user information from implicit semantics. We conduct extensive experiments based on user simulator to demonstrate the effectiveness of MACRS in recommendation and user preferences collection. Experimental results illustrate that MACRS demonstrates an improvement in user interaction experience compared to directly using LLMs.

In the current era of vast data and transparent machine learning, it is essential for techniques to operate at a large scale while providing a clear mathematical comprehension of the internal workings of the method. Although there already exist interpretable semi-parametric regression methods for large-scale applications that take into account non-linearity in the data, the complexity of the models is still often limited. One of the main challenges is the absence of interactions in these models, which are left out for the sake of better interpretability but also due to impractical computational costs. To overcome this limitation, we propose a new approach using a factorization method to derive a highly scalable higher-order tensor product spline model. Our method allows for the incorporation of all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We further develop a meaningful penalization scheme and examine the induced optimization problem. We conclude by evaluating the predictive and estimation performance of our method.

Few-shot class-incremental learning (FSCIL) aims at recognizing novel classes continually with limited novel class samples. A mainstream baseline for FSCIL is first to train the whole model in the base session, then freeze the feature extractor in the incremental sessions. Despite achieving high overall accuracy, most methods exhibit notably low accuracy for incremental classes. Some recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions, but they further cause the accuracy imbalance between past and current incremental classes. In this paper, we study the causes of such classification accuracy imbalance for FSCIL, and abstract them into a unified model bias problem. Based on the analyses, we propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes, which includes mapping ability stimulation, separately dual-feature classification, and self-optimizing classifiers. Extensive experiments on three widely-used FSCIL benchmark datasets show that our method significantly mitigates the model bias problem and achieves state-of-the-art performance.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司