亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a strongly conservative and pressure-robust hybridizable discontinuous Galerkin method for the coupled time-dependent Navier-Stokes and Darcy problem. We show existence and uniqueness of a solution and present an optimal a priori error analysis for the fully discrete problem when using Backward Euler time stepping. The theoretical results are verified by numerical examples.

相關內容

Discovering causal relations from observational data is important. The existence of unobserved variables (e.g. latent confounding or mediation) can mislead the causal identification. To overcome this problem, proximal causal discovery methods attempted to adjust for the bias via the proxy of the unobserved variable. Particularly, hypothesis test-based methods proposed to identify the causal edge by testing the induced violation of linearity. However, these methods only apply to discrete data with strict level constraints, which limits their practice in the real world. In this paper, we fix this problem by extending the proximal hypothesis test to cases where the system consists of continuous variables. Our strategy is to present regularity conditions on the conditional distributions of the observed variables given the hidden factor, such that if we discretize its observed proxy with sufficiently fine, finite bins, the involved discretization error can be effectively controlled. Based on this, we can convert the problem of testing continuous causal relations to that of testing discrete causal relations in each bin, which can be effectively solved with existing methods. These non-parametric regularities we present are mild and can be satisfied by a wide range of structural causal models. Using both simulated and real-world data, we show the effectiveness of our method in recovering causal relations when unobserved variables exist.

We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.

We introduce a priori Sobolev-space error estimates for the solution of nonlinear, and possibly parametric, PDEs using Gaussian process and kernel based methods. The primary assumptions are: (1) a continuous embedding of the reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity; and (2) the stability of the differential operator and the solution map of the PDE between corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates for kernel interpolants and relies on the minimizing norm property of the solution. The error estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic PDEs and parametric PDEs. Although some recent machine learning methods have been presented as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a trade-off between the regularity of the solution and the presence of the curse of dimensionality. Therefore, our results are in line with the understanding that the curse is absent when the solution is regular enough.

This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.

Parameter control has succeeded in accelerating the convergence process of evolutionary algorithms. While empirical and theoretical studies have shed light on the behavior of algorithms for single-objective optimization, little is known about how self-adaptation influences multi-objective evolutionary algorithms. In this work, we contribute (1) extensive experimental analysis of the Global Simple Evolutionary Multi-objective Algorithm (GSEMO) variants on classic problems, such as OneMinMax, LOTZ, COCZ, and (2) a novel version of GSEMO with self-adaptive mutation. To enable self-adaptation in GSEMO, we explore three self-adaptive mutation techniques from single-objective optimization and use various performance metrics, such as hypervolume and inverted generational distance, to guide the adaptation. Our experiments show that adapting the mutation rate based on single-objective optimization and hypervolume can speed up the convergence of GSEMO. Moreover, we propose a GSEMO with self-adaptive mutation, which considers optimizing for single objectives and adjusts the mutation rate for each solution individually. Our results demonstrate that the proposed method outperforms the GSEMO with static mutation rates across all the tested problems. This work provides a comprehensive benchmarking study for MOEAs and complements existing theoretical runtime analysis. Our proposed algorithm addresses interesting issues for designing MOEAs for future practical applications.

In Lipschitz two-dimensional domains, we study a Brinkman-Darcy-Forchheimer problem on the weighted spaces $\mathbf{H}_0^1(\omega,\Omega) \times L^2(\omega,\Omega)/\mathbb{R}$, where $\omega$ belongs to the Muckenhoupt class $A_2$. Under a suitable smallness assumption, we establish the existence and uniqueness of a solution. We propose a finite element scheme and obtain a quasi-best approximation result in energy norm \`a la C\'ea under the assumption that $\Omega$ is convex. We also devise an a posteriori error estimator and investigate its reliability and efficiency properties. Finally, we design a simple adaptive strategy that yields optimal experimental rates of convergence for the numerical examples that we perform.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method.

We present an arbitrary order discontinuous Galerkin finite element method for solving the biharmonic interface problem on the unfitted mesh. The approximation space is constructed by a patch reconstruction process with at most one degree freedom per element. The discrete problem is based on the symmetric interior penalty method and the jump conditions are weakly imposed by the Nitsche's technique. The C^2-smooth interface is allowed to intersect elements in a very general fashion and the stability near the interface is naturally ensured by the patch reconstruction. We prove the optimal a priori error estimate under the energy norm and the L^2 norm. Numerical results are provided to verify the theoretical analysis.

In this paper we consider the generalized inverse iteration for computing ground states of the Gross-Pitaevskii eigenvector problem (GPE). For that we prove explicit linear convergence rates that depend on the maximum eigenvalue in magnitude of a weighted linear eigenvalue problem. Furthermore, we show that this eigenvalue can be bounded by the first spectral gap of a linearized Gross-Pitaevskii operator, recovering the same rates as for linear eigenvector problems. With this we establish the first local convergence result for the basic inverse iteration for the GPE without damping. We also show how our findings directly generalize to extended inverse iterations, such as the Gradient Flow Discrete Normalized (GFDN) proposed in [W. Bao, Q. Du, SIAM J. Sci. Comput., 25 (2004)] or the damped inverse iteration suggested in [P. Henning, D. Peterseim, SIAM J. Numer. Anal., 53 (2020)]. Our analysis also reveals why the inverse iteration for the GPE does not react favourably to spectral shifts. This empirical observation can now be explained with a blow-up of a weighting function that crucially contributes to the convergence rates. Our findings are illustrated by numerical experiments.

We study the computational scalability of a Gaussian process (GP) framework for solving general nonlinear partial differential equations (PDEs). This framework transforms solving PDEs to solving quadratic optimization problem with nonlinear constraints. Its complexity bottleneck lies in computing with dense kernel matrices obtained from pointwise evaluations of the covariance kernel of the GP and its partial derivatives at collocation points. We present a sparse Cholesky factorization algorithm for such kernel matrices based on the near-sparsity of the Cholesky factor under a new ordering of Diracs and derivative measurements. We rigorously identify the sparsity pattern and quantify the exponentially convergent accuracy of the corresponding Vecchia approximation of the GP, which is optimal in the Kullback-Leibler divergence. This enables us to compute $\epsilon$-approximate inverse Cholesky factors of the kernel matrices with complexity $O(N\log^d(N/\epsilon))$ in space and $O(N\log^{2d}(N/\epsilon))$ in time. With the sparse factors, gradient-based optimization methods become scalable. Furthermore, we can use the oftentimes more efficient Gauss-Newton method, for which we apply the conjugate gradient algorithm with the sparse factor of a reduced kernel matrix as a preconditioner to solve the linear system. We numerically illustrate our algorithm's near-linear space/time complexity for a broad class of nonlinear PDEs such as the nonlinear elliptic, Burgers, and Monge-Amp\`ere equations. In summary, we provide a fast, scalable, and accurate method for solving general PDEs with GPs.

北京阿比特科技有限公司