亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discovering causal relations from observational data is important. The existence of unobserved variables (e.g. latent confounding or mediation) can mislead the causal identification. To overcome this problem, proximal causal discovery methods attempted to adjust for the bias via the proxy of the unobserved variable. Particularly, hypothesis test-based methods proposed to identify the causal edge by testing the induced violation of linearity. However, these methods only apply to discrete data with strict level constraints, which limits their practice in the real world. In this paper, we fix this problem by extending the proximal hypothesis test to cases where the system consists of continuous variables. Our strategy is to present regularity conditions on the conditional distributions of the observed variables given the hidden factor, such that if we discretize its observed proxy with sufficiently fine, finite bins, the involved discretization error can be effectively controlled. Based on this, we can convert the problem of testing continuous causal relations to that of testing discrete causal relations in each bin, which can be effectively solved with existing methods. These non-parametric regularities we present are mild and can be satisfied by a wide range of structural causal models. Using both simulated and real-world data, we show the effectiveness of our method in recovering causal relations when unobserved variables exist.

相關內容

We introduce a new approach to prediction in graphical models with latent-shift adaptation, i.e., where source and target environments differ in the distribution of an unobserved confounding latent variable. Previous work has shown that as long as "concept" and "proxy" variables with appropriate dependence are observed in the source environment, the latent-associated distributional changes can be identified, and target predictions adapted accurately. However, practical estimation methods do not scale well when the observations are complex and high-dimensional, even if the confounding latent is categorical. Here we build upon a recently proposed probabilistic unsupervised learning framework, the recognition-parametrised model (RPM), to recover low-dimensional, discrete latents from image observations. Applied to the problem of latent shifts, our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target. We demonstrate results in settings where predictor and proxy are high-dimensional images, a context to which previous methods fail to scale.

The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.

In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. Using a recently proposed multi-level Gaussian process emulator model, our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $\epsilon > 0$ is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multi-level Gaussian process emulator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of $\epsilon$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a standard Gaussian process emulator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.

Causal discovery from time series data is a typical problem setting across the sciences. Often, multiple datasets of the same system variables are available, for instance, time series of river runoff from different catchments. The local catchment systems then share certain causal parents, such as time-dependent large-scale weather over all catchments, but differ in other catchment-specific drivers, such as the altitude of the catchment. These drivers can be called temporal and spatial contexts, respectively, and are often partially unobserved. Pooling the datasets and considering the joint causal graph among system, context, and certain auxiliary variables enables us to overcome such latent confounding of system variables. In this work, we present a non-parametric time series causal discovery method, J(oint)-PCMCI+, that efficiently learns such joint causal time series graphs when both observed and latent contexts are present, including time lags. We present asymptotic consistency results and numerical experiments demonstrating the utility and limitations of the method.

A general class of hybrid models has been introduced recently, gathering the advantages multiscale descriptions. Concerning biological applications, the particular coupled structure fits to collective cell migrations and pattern formation scenarios. In this context, cells are modelled as discrete entities and their dynamics is given by ODEs, while the chemical signal influencing the motion is considered as a continuous signal which solves a diffusive equation. From the analytical point of view, this class of model has been proved to have a mean-field limit in the Wasserstein distance towards a system given by the coupling of a Vlasov-type equation with the chemoattractant equation. Moreover, a pressureless nonlocal Euler-type system has been derived for these models, rigorously equivalent to the Vlasov one for monokinetic initial data. In the present paper, we present a numerical study of the solutions to the Vlasov and Euler systems, exploring general settings for inital data, far from the monokinetic ones.

Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as the main variable in established methods for predicting walking time (via the walking speed) along a route. Research into fell-running has suggested further variables which may improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level of terrain obstruction. Recent improvements in data availability, as well as widespread use of GPS tracking now make it possible to explore these variables in a walking speed model at a sufficient scale to test statistical significance. We tested various established models used to predict walking speed against public GPS data from almost 88,000 km of UK walking / hiking tracks. Tracks were filtered to remove breaks and non-walking sections. A new generalised linear model (GLM) was then used to predict walking speeds. Key differences between the GLM and established rules were that the GLM considered the gradient of the terrain (hill slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruction in off-road travel. All of these factors were shown to be highly significant, and this is supported by a lower root-mean-square-error compared to existing functions. We also observed an increase in RMSE between the GLM and established methods as hill slope increases, further supporting the importance of this variable.

Stochastic optimization has found wide applications in minimizing objective functions in machine learning, which motivates a lot of theoretical studies to understand its practical success. Most of existing studies focus on the convergence of optimization errors, while the generalization analysis of stochastic optimization is much lagging behind. This is especially the case for nonconvex and nonsmooth problems often encountered in practice. In this paper, we initialize a systematic stability and generalization analysis of stochastic optimization on nonconvex and nonsmooth problems. We introduce novel algorithmic stability measures and establish their quantitative connection on the gap between population gradients and empirical gradients, which is then further extended to study the gap between the Moreau envelope of the empirical risk and that of the population risk. To our knowledge, these quantitative connection between stability and generalization in terms of either gradients or Moreau envelopes have not been studied in the literature. We introduce a class of sampling-determined algorithms, for which we develop bounds for three stability measures. Finally, we apply these discussions to derive error bounds for stochastic gradient descent and its adaptive variant, where we show how to achieve an implicit regularization by tuning the step sizes and the number of iterations.

Meta-analysis aggregates information across related studies to provide more reliable statistical inference and has been a vital tool for assessing the safety and efficacy of many high profile pharmaceutical products. A key challenge in conducting a meta-analysis is that the number of related studies is typically small. Applying classical methods that are asymptotic in the number of studies can compromise the validity of inference, particularly when heterogeneity across studies is present. Moreover, serious adverse events are often rare and can result in one or more studies with no events in at least one study arm. While it is common to use arbitrary continuity corrections or remove zero-event studies to stabilize or define effect estimates in such settings, these practices can invalidate subsequent inference. To address these significant practical issues, we introduce an exact inference method for comparing event rates in two treatment arms under a random effects framework, which we coin "XRRmeta". In contrast to existing methods, the coverage of the confidence interval from XRRmeta is guaranteed to be at or above the nominal level (up to Monte Carlo error) when the event rates, number of studies, and/or the within-study sample sizes are small. XRRmeta is also justified in its treatment of zero-event studies through a conditional inference argument. Importantly, our extensive numerical studies indicate that XRRmeta does not yield overly conservative inference. We apply our proposed method to reanalyze the occurrence of major adverse cardiovascular events among type II diabetics treated with rosiglitazone and in a more recent example examining the utility of face masks in preventing person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19).

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司