Quantum multiprover interactive proof systems with entanglement MIP* are much more powerful than their classical counterpart MIP (Babai et al. '91, Ji et al. '20): while MIP = NEXP, the quantum class MIP* is equal to RE, a class including the halting problem. This is because the provers in MIP* can share unbounded quantum entanglement. However, recent works of Qin and Yao '21 and '23 have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP*[poly, O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is contained in NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) by Qin and Yao '21. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fr\'echet derivatives or which are Lipschitz continous.
Recent initiatives known as Future Internet Architectures (FIAs) seek to redesign the Internet to improve performance, scalability, and security. However, some governments perceive Internet access as a threat to their political standing and engage in widespread network surveillance and censorship. In this paper, we provide an in-depth analysis into the designs of prominent FIAs, to help understand of how FIAs impact surveillance and censorship abilities. Then, we survey the applicability of privacy-enhancing technologies to FIAs. We conclude by providing guidelines for future research into novel FIA-based privacy-enhancing technologies, and recommendations to guide the evaluation of these technologies.
Occasional deadline misses are acceptable for soft real-time systems. Quantifying probabilistic and deterministic characteristics of deadline misses is therefore essential to ensure that deadline misses indeed happen only occasionally. This is supported by recent research activities on probabilistic worst-case execution time, worst-case deadline failure probability, the maximum number of deadline misses, upper bounds on the deadline miss probability, and the deadline miss rate. This paper focuses on the deadline miss rate of a periodic soft real-time task in the long run. Our model assumes that this soft real-time task has an arbitrary relative deadline and that a job can still be executed after a deadline-miss until a dismiss point. This model generalizes the existing models that either dismiss a job immediately after its deadline miss or never dismiss a job. We provide mathematical notation on the convergence of the deadline miss rate in the long run and essential properties to calculate the deadline miss rate. Specifically, we use a Markov chain to model the execution behavior of a periodic soft real-time task. We present the required ergodicity property to ensure that the deadline miss rate in the long run is described by a stationary distribution.
Numerical difference computation is one of the cores and indispensable in the modern digital era. Tao general difference (TGD) is a novel theory and approach to difference computation for discrete sequences and arrays in multidimensional space. Built on the solid theoretical foundation of the general difference in a finite interval, the TGD operators demonstrate exceptional signal processing capabilities in real-world applications. A novel smoothness property of a sequence is defined on the first- and second TGD. This property is used to denoise one-dimensional signals, where the noise is the non-smooth points in the sequence. Meanwhile, the center of the gradient in a finite interval can be accurately location via TGD calculation. This solves a traditional challenge in computer vision, which is the precise localization of image edges with noise robustness. Furthermore, the power of TGD operators extends to spatio-temporal edge detection in three-dimensional arrays, enabling the identification of kinetic edges in video data. These diverse applications highlight the properties of TGD in discrete domain and the significant promise of TGD for the computation across signal processing, image analysis, and video analytic.
Managers, employers, policymakers, and others often seek to understand whether decisions are biased against certain groups. One popular analytic strategy is to estimate disparities after adjusting for observed covariates, typically with a regression model. This approach, however, suffers from two key statistical challenges. First, omitted-variable bias can skew results if the model does not adjust for all relevant factors; second, and conversely, included-variable bias -- a lesser-known phenomenon -- can skew results if the set of covariates includes irrelevant factors. Here we introduce a new, three-step statistical method, which we call risk-adjusted regression, to address both concerns in settings where decision makers have clearly measurable objectives. In the first step, we use all available covariates to estimate the value, or inversely, the risk, of taking a certain action, such as approving a loan application or hiring a job candidate. Second, we measure disparities in decisions after adjusting for these risk estimates alone, mitigating the problem of included-variable bias. Finally, in the third step, we assess the sensitivity of results to potential mismeasurement of risk, addressing concerns about omitted-variable bias. To do so, we develop a novel, non-parametric sensitivity analysis that yields tight bounds on the true disparity in terms of the average gap between true and estimated risk -- a single interpretable parameter that facilitates credible estimates. We demonstrate this approach on a detailed dataset of 2.2 million police stops of pedestrians in New York City, and show that traditional statistical tests of discrimination can substantially underestimate the magnitude of disparities.
Recent studies of the emergent capabilities of transformer-based Natural Language Understanding (NLU) models have indicated that they have an understanding of lexical and compositional semantics. We provide evidence that suggests these claims should be taken with a grain of salt: we find that state-of-the-art Natural Language Inference (NLI) models are sensitive towards minor semantics preserving surface-form variations, which lead to sizable inconsistent model decisions during inference. Notably, this behaviour differs from valid and in-depth comprehension of compositional semantics, however does neither emerge when evaluating model accuracy on standard benchmarks nor when probing for syntactic, monotonic, and logically robust reasoning. We propose a novel framework to measure the extent of semantic sensitivity. To this end, we evaluate NLI models on adversarially generated examples containing minor semantics-preserving surface-form input noise. This is achieved using conditional text generation, with the explicit condition that the NLI model predicts the relationship between the original and adversarial inputs as a symmetric equivalence entailment. We systematically study the effects of the phenomenon across NLI models for \emph{in-} and \emph{out-of} domain settings. Our experiments show that semantic sensitivity causes performance degradations of $12.92\%$ and $23.71\%$ average over \emph{in-} and \emph{out-of-} domain settings, respectively. We further perform ablation studies, analysing this phenomenon across models, datasets, and variations in inference and show that semantic sensitivity can lead to major inconsistency within model predictions.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.