亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a fundamental issue in network analysis, structural node similarity has received much attention in academia and is adopted in a wide range of applications. Among these proposed structural node similarity measures, role similarity stands out because of satisfying several axiomatic properties including automorphism conformation. Existing role similarity metrics cannot handle top-k queries on large real-world networks due to the high time and space cost. In this paper, we propose a new role similarity metric, namely \textsf{ForestSim}. We prove that \textsf{ForestSim} is an admissible role similarity metric and devise the corresponding top-k similarity search algorithm, namely \textsf{ForestSimSearch}, which is able to process a top-k query in $O(k)$ time once the precomputation is finished. Moreover, we speed up the precomputation by using a fast approximate algorithm to compute the diagonal entries of the forest matrix, which reduces the time and space complexity of the precomputation to $O(\epsilon^{-2}m\log^5{n}\log{\frac{1}{\epsilon}})$ and $O(m\log^3{n})$, respectively. Finally, we conduct extensive experiments on 26 real-world networks. The results show that \textsf{ForestSim} works efficiently on million-scale networks and achieves comparable performance to the state-of-art methods.

相關內容

We prove new bounds on the distributed fractional coloring problem in the LOCAL model. Fractional $c$-colorings can be understood as multicolorings as follows. For some natural numbers $p$ and $q$ such that $p/q\leq c$, each node $v$ is assigned a set of at least $q$ colors from $\{1,\dots,p\}$ such that adjacent nodes are assigned disjoint sets of colors. The minimum $c$ for which a fractional $c$-coloring of a graph $G$ exists is called the fractional chromatic number $\chi_f(G)$ of $G$. Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant $\epsilon>0$, a fractional $(\Delta+\epsilon)$-coloring can be computed in $\Delta^{O(\Delta)} + O(\Delta\cdot\log^* n)$ rounds. We show that such a coloring can be computed in only $O(\log^2 \Delta)$ rounds, without any dependency on $n$. We further show that in $O\big(\frac{\log n}{\epsilon}\big)$ rounds, it is possible to compute a fractional $(1+\epsilon)\chi_f(G)$-coloring, even if the fractional chromatic number $\chi_f(G)$ is not known. That is, this problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an $O\big(\frac{\log n}{\log\log n}\big)$-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number $2$, computing a fractional $(2+\epsilon)$-coloring requires at least $\Omega\big(\frac{\log n}{\epsilon}\big)$ rounds. We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional $(2+\epsilon)$-coloring can be computed in time $O(\log^* n)$. We show that such a coloring can even be computed in $O(1)$ rounds in the LOCAL model.

We consider a standard distributed optimisation setting where $N$ machines, each holding a $d$-dimensional function $f_i$, aim to jointly minimise the sum of the functions $\sum_{i = 1}^N f_i (x)$. This problem arises naturally in large-scale distributed optimisation, where a standard solution is to apply variants of (stochastic) gradient descent. We focus on the communication complexity of this problem: our main result provides the first fully unconditional bounds on total number of bits which need to be sent and received by the $N$ machines to solve this problem under point-to-point communication, within a given error-tolerance. Specifically, we show that $\Omega( Nd \log d / N\varepsilon)$ total bits need to be communicated between the machines to find an additive $\epsilon$-approximation to the minimum of $\sum_{i = 1}^N f_i (x)$. The result holds for both deterministic and randomised algorithms, and, importantly, requires no assumptions on the algorithm structure. The lower bound is tight under certain restrictions on parameter values, and is matched within constant factors for quadratic objectives by a new variant of quantised gradient descent, which we describe and analyse. Our results bring over tools from communication complexity to distributed optimisation, which has potential for further applications.

We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. $\bullet$ Small d: We provide the first linear-time algorithm for 1-center problem in fixed-dimensional $\ell_1$ metrics. On the other hand, assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large d. When $d=\Omega(n)$, we extend our conditional lower bound to rule out sub quartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\epsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

Large intelligent surface-based transceivers (LISBTs), in which a spatially continuous surface is being used for signal transmission and reception, have emerged as a promising solution for improving the coverage and data rate of wireless communication systems. To realize these objectives, the acquisition of accurate channel state information (CSI) in LISBT-assisted wireless communication systems is crucial. In this paper, we propose a channel estimation scheme based on a parametric physical channel model for line-of-sight dominated communication in millimeter and terahertz wave bands. The proposed estimation scheme requires only five pilot signals to perfectly estimate the channel parameters assuming there is no noise at the receiver. In the presence of noise, we propose an iterative estimation algorithm that decreases the channel estimation error due to noise. The training overhead and computational cost of the proposed scheme do not scale with the number of antennas. The simulation results demonstrate that the proposed estimation scheme significantly outperforms other benchmark schemes.

The greedy spanner in a low dimensional Euclidean space is a fundamental geometric construction that has been extensively studied over three decades as it possesses the two most basic properties of a good spanner: constant maximum degree and constant lightness. Recently, Eppstein and Khodabandeh showed that the greedy spanner in $\mathbb{R}^2$ admits a sublinear separator in a strong sense: any subgraph of $k$ vertices of the greedy spanner in $\mathbb{R}^2$ has a separator of size $O(\sqrt{k})$. Their technique is inherently planar and is not extensible to higher dimensions. They left showing the existence of a small separator for the greedy spanner in $\mathbb{R}^d$ for any constant $d\geq 3$ as an open problem. In this paper, we resolve the problem of Eppstein and Khodabandeh by showing that any subgraph of $k$ vertices of the greedy spanner in $\mathbb{R}^d$ has a separator of size $O(k^{1-1/d})$. We introduce a new technique that gives a simple characterization for any geometric graph to have a sublinear separator that we dub $\tau$-lanky: a geometric graph is $\tau$-lanky if any ball of radius $r$ cuts at most $\tau$ edges of length at least $r$ in the graph. We show that any $\tau$-lanky geometric graph of $n$ vertices in $\mathbb{R}^d$ has a separator of size $O(\tau n^{1-1/d})$. We then derive our main result by showing that the greedy spanner is $O(1)$-lanky. We indeed obtain a more general result that applies to unit ball graphs and point sets of low fractal dimensions in $\mathbb{R}^d$. Our technique naturally extends to doubling metrics. We use the $\tau$-lanky characterization to show that there exists a $(1+\epsilon)$-spanner for doubling metrics of dimension $d$ with a constant maximum degree and a separator of size $O(n^{1-\frac{1}{d}})$; this result resolves an open problem posed by Abam and Har-Peled a decade ago.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

Existing image inpainting methods typically fill holes by borrowing information from surrounding image regions. They often produce unsatisfactory results when the holes overlap with or touch foreground objects due to lack of information about the actual extent of foreground and background regions within the holes. These scenarios, however, are very important in practice, especially for applications such as distracting object removal. To address the problem, we propose a foreground-aware image inpainting system that explicitly disentangles structure inference and content completion. Specifically, our model learns to predict the foreground contour first, and then inpaints the missing region using the predicted contour as guidance. We show that by this disentanglement, the contour completion model predicts reasonable contours of objects, and further substantially improves the performance of image inpainting. Experiments show that our method significantly outperforms existing methods and achieves superior inpainting results on challenging cases with complex compositions.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

Deep distance metric learning (DDML), which is proposed to learn image similarity metrics in an end-to-end manner based on the convolution neural network, has achieved encouraging results in many computer vision tasks.$L2$-normalization in the embedding space has been used to improve the performance of several DDML methods. However, the commonly used Euclidean distance is no longer an accurate metric for $L2$-normalized embedding space, i.e., a hyper-sphere. Another challenge of current DDML methods is that their loss functions are usually based on rigid data formats, such as the triplet tuple. Thus, an extra process is needed to prepare data in specific formats. In addition, their losses are obtained from a limited number of samples, which leads to a lack of the global view of the embedding space. In this paper, we replace the Euclidean distance with the cosine similarity to better utilize the $L2$-normalization, which is able to attenuate the curse of dimensionality. More specifically, a novel loss function based on the von Mises-Fisher distribution is proposed to learn a compact hyper-spherical embedding space. Moreover, a new efficient learning algorithm is developed to better capture the global structure of the embedding space. Experiments for both classification and retrieval tasks on several standard datasets show that our method achieves state-of-the-art performance with a simpler training procedure. Furthermore, we demonstrate that, even with a small number of convolutional layers, our model can still obtain significantly better classification performance than the widely used softmax loss.

Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe challenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.

北京阿比特科技有限公司