亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

JPEG is still the most widely used image compression algorithm. Most image compression algorithms only consider uncompressed original image, while ignoring a large number of already existing JPEG images. Recently, JPEG recompression approaches have been proposed to further reduce the size of JPEG files. However, those methods only consider JPEG lossless recompression, which is just a special case of the rate-distortion theorem. In this paper, we propose a unified lossly and lossless JPEG recompression framework, which consists of learned quantization table and Markovian hierarchical variational autoencoders. Experiments show that our method can achieve arbitrarily low distortion when the bitrate is close to the upper bound, namely the bitrate of the lossless compression model. To the best of our knowledge, this is the first learned method that bridges the gap between lossy and lossless recompression of JPEG images.

相關內容

Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.

Bias correction can often improve the finite sample performance of estimators. We show that the choice of bias correction method has no effect on the higher-order variance of semiparametrically efficient parametric estimators, so long as the estimate of the bias is asymptotically linear. It is also shown that bootstrap, jackknife, and analytical bias estimates are asymptotically linear for estimators with higher-order expansions of a standard form. In particular, we find that for a variety of estimators the straightforward bootstrap bias correction gives the same higher-order variance as more complicated analytical or jackknife bias corrections. In contrast, bias corrections that do not estimate the bias at the parametric rate, such as the split-sample jackknife, result in larger higher-order variances in the i.i.d. setting we focus on. For both a cross-sectional MLE and a panel model with individual fixed effects, we show that the split-sample jackknife has a higher-order variance term that is twice as large as that of the `leave-one-out' jackknife.

In the symbolic verification of cryptographic protocols, a central problem is deciding whether a protocol admits an execution which leaks a designated secret to the malicious intruder. Rusinowitch & Turuani (2003) show that, when considering finitely many sessions, this ``insecurity problem'' is NP-complete. Central to their proof strategy is the observation that any execution of a protocol can be simulated by one where the intruder only communicates terms of bounded size. However, when we consider models where, in addition to terms, one can also communicate logical statements about terms, the analysis of the insecurity problem becomes tricky when both these inference systems are considered together. In this paper we consider the insecurity problem for protocols with logical statements that include {\em equality on terms} and {\em existential quantification}. Witnesses for existential quantifiers may be unbounded, and obtaining small witness terms while maintaining equality proofs complicates the analysis considerably. We extend techniques from Rusinowitch & Turuani (2003) to show that this problem is also in NP.

In this work, a Generalized Finite Difference (GFD) scheme is presented for effectively computing the numerical solution of a parabolic-elliptic system modelling a bacterial strain with density-suppressed motility. The GFD method is a meshless method known for its simplicity for solving non-linear boundary value problems over irregular geometries. The paper first introduces the basic elements of the GFD method, and then an explicit-implicit scheme is derived. The convergence of the method is proven under a bound for the time step, and an algorithm is provided for its computational implementation. Finally, some examples are considered comparing the results obtained with a regular mesh and an irregular cloud of points.

Speech super-resolution (SR) is the task that restores high-resolution speech from low-resolution input. Existing models employ simulated data and constrained experimental settings, which limit generalization to real-world SR. Predictive models are known to perform well in fixed experimental settings, but can introduce artifacts in adverse conditions. On the other hand, generative models learn the distribution of target data and have a better capacity to perform well on unseen conditions. In this study, we propose a novel two-stage approach that combines the strengths of predictive and generative models. Specifically, we employ a diffusion-based model that is conditioned on the output of a predictive model. Our experiments demonstrate that the model significantly outperforms single-stage counterparts and existing strong baselines on benchmark SR datasets. Furthermore, we introduce a repainting technique during the inference of the diffusion process, enabling the proposed model to regenerate high-frequency components even in mismatched conditions. An additional contribution is the collection of and evaluation on real SR recordings, using the same microphone at different native sampling rates. We make this dataset freely accessible, to accelerate progress towards real-world speech super-resolution.

Inequality measures are quantitative measures that take values in the unit interval, with a zero value characterizing perfect equality. Although originally proposed to measure economic inequalities, they can be applied to several other situations, in which one is interested in the mutual variability between a set of observations, rather than in their deviations from the mean. While unidimensional measures of inequality, such as the Gini index, are widely known and employed, multidimensional measures, such as Lorenz Zonoids, are difficult to interpret and computationally expensive and, for these reasons, are not much well known. To overcome the problem, in this paper we propose a new scaling invariant multidimensional inequality index, based on the Fourier transform, which exhibits a number of interesting properties, and whose application to the multidimensional case is rather straightforward to calculate and interpret.

We introduce MCCE: Monte Carlo sampling of valid and realistic Counterfactual Explanations for tabular data, a novel counterfactual explanation method that generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features given the immutable features and the decision. Unlike other on-manifold methods that tend to rely on variational autoencoders and have strict prediction model and data requirements, MCCE handles any type of prediction model and categorical features with more than two levels. MCCE first models the joint distribution of the features and the decision with an autoregressive generative model where the conditionals are estimated using decision trees. Then, it samples a large set of observations from this model, and finally, it removes the samples that do not obey certain criteria. We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets and show that MCCE outperforms these methods on all common performance metrics and speed. In particular, including the decision in the modeling process improves the efficiency of the method substantially.

Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions. While existing studies on Deep Learning (DL) for SU typically focus on single time-step hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a Long-Short Term Memory (LSTM)-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input-output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS multispectral time series at 460m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC abundances along with ancillary information. The dataset (//zenodo.org/records/7752348) and code (//github.com/jrodriguezortega/MSMTU) are available to the public.

Bayesian sampling is an important task in statistics and machine learning. Over the past decade, many ensemble-type sampling methods have been proposed. In contrast to the classical Markov chain Monte Carlo methods, these new methods deploy a large number of interactive samples, and the communication between these samples is crucial in speeding up the convergence. To justify the validity of these sampling strategies, the concept of interacting particles naturally calls for the mean-field theory. The theory establishes a correspondence between particle interactions encoded in a set of coupled ODEs/SDEs and a PDE that characterizes the evolution of the underlying distribution. This bridges numerical algorithms with the PDE theory used to show convergence in time. Many mathematical machineries are developed to provide the mean-field analysis, and we showcase two such examples: The coupling method and the compactness argument built upon the martingale strategy. The former has been deployed to show the convergence of ensemble Kalman sampler and ensemble Kalman inversion, and the latter will be shown to be immensely powerful in proving the validity of the Vlasov-Boltzmann simulator.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司