This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erd\H{o}s, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
Linear arrangements of graphs are a well-known type of graph labeling and are found at the heart of many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in $O(n^3)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, it produces a high quality approximation to $\texttt{MaxLA}$ for trees where the algorithm fails to solve $\texttt{MaxLA}$. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.
This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a $4\times 5$ matrix multiplied by a $5\times 5$ matrix from $76$ to $73$, and that from $95$ to $94$ for a $5 \times 5$ matrix multiplied by another $5\times 5$ matrix. These results are obtained in characteristic two.
Learning a graph from data is the key to taking advantage of graph signal processing tools. Most of the conventional algorithms for graph learning require complete data statistics, which might not be available in some scenarios. In this work, we aim to learn a graph from incomplete time-series observations. From another viewpoint, we consider the problem of semi-blind recovery of time-varying graph signals where the underlying graph model is unknown. We propose an algorithm based on the method of block successive upperbound minimization (BSUM), for simultaneous inference of the signal and the graph from incomplete data. Simulation results on synthetic and real time-series demonstrate the performance of the proposed method for graph learning and signal recovery.
In the field of natural language understanding, the intersection of neural models and graph meaning representations (GMRs) remains a compelling area of research. Despite the growing interest, a critical gap persists in understanding the exact influence of GMRs, particularly concerning relation extraction tasks. Addressing this, we introduce DAGNN-plus, a simple and parameter-efficient neural architecture designed to decouple contextual representation learning from structural information propagation. Coupled with various sequence encoders and GMRs, this architecture provides a foundation for systematic experimentation on two English and two Chinese datasets. Our empirical analysis utilizes four different graph formalisms and nine parsers. The results yield a nuanced understanding of GMRs, showing improvements in three out of the four datasets, particularly favoring English over Chinese due to highly accurate parsers. Interestingly, GMRs appear less effective in literary-domain datasets compared to general-domain datasets. These findings lay the groundwork for better-informed design of GMRs and parsers to improve relation classification, which is expected to tangibly impact the future trajectory of natural language understanding research.
Considering the challenges posed by the space and time complexities in handling extensive scientific volumetric data, various data representations have been developed for the analysis of large-scale scientific data. Multivariate functional approximation (MFA) is an innovative data model designed to tackle substantial challenges in scientific data analysis. It computes values and derivatives with high-order accuracy throughout the spatial domain, mitigating artifacts associated with zero- or first-order interpolation. However, the slow query time through MFA makes it less suitable for interactively visualizing a large MFA model. In this work, we develop the first scalable interactive volume visualization pipeline, MFA-DVV, for the MFA model encoded from large-scale datasets. Our method achieves low input latency through distributed architecture, and its performance can be further enhanced by utilizing a compressed MFA model while still maintaining a high-quality rendering result for scientific datasets. We conduct comprehensive experiments to show that MFA-DVV can decrease the input latency and achieve superior visualization results for big scientific data compared with existing approaches.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.