亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The primary goal of any company is to increase its profits by improving both the quality of its products and how they are advertised. In this context, neuromarketing seeks to enhance the promotion of products and generate a greater acceptance on potential buyers. Traditionally, neuromarketing studies have relied on a single biosignal to obtain feedback from presented stimuli. However, thanks to new devices and technological advances studying this area of knowledge, recent trends indicate a shift towards the fusion of diverse biosignals. An example is the usage of electroencephalography for understanding the impact of an advertisement at the neural level and visual tracking to identify the stimuli that induce such impacts. This emerging pattern determines which biosignals to employ for achieving specific neuromarketing objectives. Furthermore, the fusion of data from multiple sources demands advanced processing methodologies. Despite these complexities, there is a lack of literature that adequately collates and organizes the various data sources and the applied processing techniques for the research objectives pursued. To address these challenges, the current paper conducts a comprehensive analysis of the objectives, biosignals, and data processing techniques employed in neuromarketing research. This study provides both the technical definition and a graphical distribution of the elements under revision. Additionally, it presents a categorization based on research objectives and provides an overview of the combinatory methodologies employed. After this, the paper examines primary public datasets designed for neuromarketing research together with others whose main purpose is not neuromarketing, but can be used for this matter. Ultimately, this work provides a historical perspective on the evolution of techniques across various phases over recent years and enumerates key lessons learned.

相關內容

With the rise of cyber threats, cyber insurance is becoming an important consideration for businesses. However, research on cyber insurance risk has so far been hindered by the general lack of data, as well as limitations underlying what limited data are available publicly. Specifically and of particular importance to cyber insurance modelling, limitations arising from lack of information regarding (i) delays in reporting, (ii) all businesses affected by third-party events, and (iii) changes in reporting propensity. In this paper, we fill this important gap by utilising an underrecognised set of public data provided by U.S. state Attorneys General, and provide new insights on the true scale of cyber insurance risk. These data are collected based on mandatory reporting requirements of data breaches, and contain substantial and detailed information. We further discuss extensively the associated implications of our findings for cyber insurance pricing, reserving, underwriting, and experience monitoring.

Large Language Models (LLM) and foundation models are popular as they offer new opportunities for individuals and businesses to improve natural language processing, interact with data, and retrieve information faster. However, training or fine-tuning LLMs requires a vast amount of data, which can be challenging to access due to legal or technical restrictions and may require private computing resources. Federated Learning (FL) is a solution designed to overcome these challenges and expand data access for deep learning applications. This paper takes a hardware-centric approach to explore how LLMs can be brought to modern edge computing systems. Our study fine-tunes the FLAN-T5 model family, ranging from 80M to 3B parameters, using FL for a text summarization task. We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions. Our contribution is twofold: First, we evaluate the current capabilities of edge computing systems and their potential for LLM FL workloads. Second, by comparing these systems with a data-center GPU, we demonstrate the potential for improvement and the next steps toward achieving greater computational efficiency at the edge.

Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司