In this paper, we propose a method for improving the angular accuracy and photo-reality of gaze and head redirection in full-face images. The problem with current models is that they cannot handle redirection at large angles, and this limitation mainly comes from the lack of training data. To resolve this problem, we create data augmentation by monocular 3D face reconstruction to extend the head pose and gaze range of the real data, which allows the model to handle a wider redirection range. In addition to the main focus on data augmentation, we also propose a framework with better image quality and identity preservation of unseen subjects even training with synthetic data. Experiments show that our method significantly improves redirection performance in terms of redirection angular accuracy while maintaining high image quality, especially when redirecting to large angles.
In this paper we fully describe the trajectory of gradient flow over diagonal linear networks in the limit of vanishing initialisation. We show that the limiting flow successively jumps from a saddle of the training loss to another until reaching the minimum $\ell_1$-norm solution. This saddle-to-saddle dynamics translates to an incremental learning process as each saddle corresponds to the minimiser of the loss constrained to an active set outside of which the coordinates must be zero. We explicitly characterise the visited saddles as well as the jumping times through a recursive algorithm reminiscent of the LARS algorithm used for computing the Lasso path. Our proof leverages a convenient arc-length time-reparametrisation which enables to keep track of the heteroclinic transitions between the jumps. Our analysis requires negligible assumptions on the data, applies to both under and overparametrised settings and covers complex cases where there is no monotonicity of the number of active coordinates. We provide numerical experiments to support our findings.
In this paper, we propose a novel data-pruning approach called moving-one-sample-out (MoSo), which aims to identify and remove the least informative samples from the training set. The core insight behind MoSo is to determine the importance of each sample by assessing its impact on the optimal empirical risk. This is achieved by measuring the extent to which the empirical risk changes when a particular sample is excluded from the training set. Instead of using the computationally expensive leaving-one-out-retraining procedure, we propose an efficient first-order approximator that only requires gradient information from different training stages. The key idea behind our approximation is that samples with gradients that are consistently aligned with the average gradient of the training set are more informative and should receive higher scores, which could be intuitively understood as follows: if the gradient from a specific sample is consistent with the average gradient vector, it implies that optimizing the network using the sample will yield a similar effect on all remaining samples. Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios and achieves satisfactory performance across various settings.
Manifold visualisation techniques are commonly used to visualise high-dimensional datasets in physical sciences. In this paper we apply a recently introduced manifold visualisation method, called Slise, on datasets from physics and chemistry. Slisemap combines manifold visualisation with explainable artificial intelligence. Explainable artificial intelligence is used to investigate the decision processes of black box machine learning models and complex simulators. With Slisemap we find an embedding such that data items with similar local explanations are grouped together. Hence, Slisemap gives us an overview of the different behaviours of a black box model. This makes Slisemap into a supervised manifold visualisation method, where the patterns in the embedding reflect a target property. In this paper we show how Slisemap can be used and evaluated on physical data and that Slisemap is helpful in finding meaningful information on classification and regression models trained on these datasets.
In this paper, we address the problem of simultaneous relighting and novel view synthesis of a complex scene from multi-view images with a limited number of light sources. We propose an analysis-synthesis approach called Relit-NeuLF. Following the recent neural 4D light field network (NeuLF), Relit-NeuLF first leverages a two-plane light field representation to parameterize each ray in a 4D coordinate system, enabling efficient learning and inference. Then, we recover the spatially-varying bidirectional reflectance distribution function (SVBRDF) of a 3D scene in a self-supervised manner. A DecomposeNet learns to map each ray to its SVBRDF components: albedo, normal, and roughness. Based on the decomposed BRDF components and conditioning light directions, a RenderNet learns to synthesize the color of the ray. To self-supervise the SVBRDF decomposition, we encourage the predicted ray color to be close to the physically-based rendering result using the microfacet model. Comprehensive experiments demonstrate that the proposed method is efficient and effective on both synthetic data and real-world human face data, and outperforms the state-of-the-art results. We publicly released our code on GitHub. You can find it here: //github.com/oppo-us-research/RelitNeuLF
In this paper, we present a Java-to-Python (J2P) and Python-to-Java (P2J) back-to-back code translation method, and an associated tool called CoTran, based on large language models (LLMs). Our method leverages the attention mechanism of LLMs, compilation, and symbolic execution-based test generation for equivalence testing between the input and output programs. More precisely, we modify the typical LLM training loop to incorporate compiler and symbolic execution loss. Via extensive experiments comparing CoTran with 12 other transpilers and LLM-based translation tools over a benchmark of more than 57,000 Java-Python equivalent pairs, we show that CoTran outperforms them on relevant metrics such as compilation and runtime equivalence accuracy. For example, our tool gets 97.43% compilation accuracy and 49.66% runtime equivalence accuracy for J2P translation, whereas the nearest competing tool only gets 92.84% and 40.95% respectively.
In this paper we consider the problem of obtaining sharp bounds for the performance of temporal difference (TD) methods with linear functional approximation for policy evaluation in discounted Markov Decision Processes. We show that a simple algorithm with a universal and instance-independent step size together with Polyak-Ruppert tail averaging is sufficient to obtain near-optimal variance and bias terms. We also provide the respective sample complexity bounds. Our proof technique is based on refined error bounds for linear stochastic approximation together with the novel stability result for the product of random matrices that arise from the TD-type recurrence.
In this paper, we consider the simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted THz communications with three-side beam split. Except for the beam split at the base station (BS), we analyze the double-side beam split at the STAR-RIS for the first time. To relieve the double-side beam split effect, we propose a time delayer (TD)-based fully-connected structure at the STAR-RIS. As a further advance, a low-hardware complexity and low-power consumption sub-connected structure is developed, where multiple STAR-RIS elements share one TD. Meanwhile, considering the practical scenario, we investigate a multi-STAR-RIS and multi-user communication system, and a sum rate maximization problem is formulated by jointly optimizing the hybrid analog/digital beamforming, time delays at the BS as well as the double-layer phase-shift coefficients, time delays and amplitude coefficients at the STAR-RISs. Based on this, we first allocate users for each STAR-RIS, and then derive the analog beamforming, time delays at the BS, and the double-layer phase-shift coefficients, time delays at each STAR-RIS. Next, we develop an alternative optimization algorithm to calculate the digital beamforming at the BS and amplitude coefficients at the STAR-RISs. Finally, the numerical results verify the effectiveness of the proposed schemes.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax