Face rendering using neural radiance fields (NeRF) is a rapidly developing research area in computer vision. While recent methods primarily focus on controlling facial attributes such as identity and expression, they often overlook the crucial aspect of modeling eyeball rotation, which holds importance for various downstream tasks. In this paper, we aim to learn a face NeRF model that is sensitive to eye movements from multi-view images. We address two key challenges in eye-aware face NeRF learning: how to effectively capture eyeball rotation for training and how to construct a manifold for representing eyeball rotation. To accomplish this, we first fit FLAME, a well-established parametric face model, to the multi-view images considering multi-view consistency. Subsequently, we introduce a new Dynamic Eye-aware NeRF (DeNeRF). DeNeRF transforms 3D points from different views into a canonical space to learn a unified face NeRF model. We design an eye deformation field for the transformation, including rigid transformation, e.g., eyeball rotation, and non-rigid transformation. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our model is capable of generating high-fidelity images with accurate eyeball rotation and non-rigid periocular deformation, even under novel viewing angles. Furthermore, we show that utilizing the rendered images can effectively enhance gaze estimation performance.
Recently, some researchers started exploring the use of ViTs in tackling HSI classification and achieved remarkable results. However, the training of ViT models requires a considerable number of training samples, while hyperspectral data, due to its high annotation costs, typically has a relatively small number of training samples. This contradiction has not been effectively addressed. In this paper, aiming to solve this problem, we propose the single-direction tuning (SDT) strategy, which serves as a bridge, allowing us to leverage existing labeled HSI datasets even RGB datasets to enhance the performance on new HSI datasets with limited samples. The proposed SDT inherits the idea of prompt tuning, aiming to reuse pre-trained models with minimal modifications for adaptation to new tasks. But unlike prompt tuning, SDT is custom-designed to accommodate the characteristics of HSIs. The proposed SDT utilizes a parallel architecture, an asynchronous cold-hot gradient update strategy, and unidirectional interaction. It aims to fully harness the potent representation learning capabilities derived from training on heterologous, even cross-modal datasets. In addition, we also introduce a novel Triplet-structured transformer (Tri-Former), where spectral attention and spatial attention modules are merged in parallel to construct the token mixing component for reducing computation cost and a 3D convolution-based channel mixer module is integrated to enhance stability and keep structure information. Comparison experiments conducted on three representative HSI datasets captured by different sensors demonstrate the proposed Tri-Former achieves better performance compared to several state-of-the-art methods. Homologous, heterologous and cross-modal tuning experiments verified the effectiveness of the proposed SDT.
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a realistic and challenging problem in visual reinforcement learning. Recently, unsupervised representation learning methods based on bisimulation metrics, contrast, prediction, and reconstruction have shown the ability for task-relevant information extraction. However, due to the lack of appropriate mechanisms for the extraction of task information in the prediction, contrast, and reconstruction-related approaches and the limitations of bisimulation-related methods in domains with sparse rewards, it is still difficult for these methods to be effectively extended to environments with distractions. To alleviate these problems, in the paper, the action sequences, which contain task-intensive signals, are incorporated into representation learning. Specifically, we propose a Sequential Action--induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions, so the agent can be induced to learn the robust representation against distractions. We conduct extensive experiments on the DeepMind Control suite tasks with distractions while achieving the best performance over strong baselines. We also demonstrate the effectiveness of our method at disregarding task-irrelevant information by deploying SAR to real-world CARLA-based autonomous driving with natural distractions. Finally, we provide the analysis results of generalization drawn from the generalization decay and t-SNE visualization. Code and demo videos are available at //github.com/DMU-XMU/SAR.git.
Perceiving and mapping the surroundings are essential for enabling autonomous navigation in any robotic platform. The algorithm class that enables accurate mapping while correcting the odometry errors present in most robotics systems is Simultaneous Localization and Mapping (SLAM). Today, fully onboard mapping is only achievable on robotic platforms that can host high-wattage processors, mainly due to the significant computational load and memory demands required for executing SLAM algorithms. For this reason, pocket-size hardware-constrained robots offload the execution of SLAM to external infrastructures. To address the challenge of enabling SLAM algorithms on resource-constrained processors, this paper proposes NanoSLAM, a lightweight and optimized end-to-end SLAM approach specifically designed to operate on centimeter-size robots at a power budget of only 87.9 mW. We demonstrate the mapping capabilities in real-world scenarios and deploy NanoSLAM on a nano-drone weighing 44 g and equipped with a novel commercial RISC-V low-power parallel processor called GAP9. The algorithm is designed to leverage the parallel capabilities of the RISC-V processing cores and enables mapping of a general environment with an accuracy of 4.5 cm and an end-to-end execution time of less than 250 ms.
Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on resolving the holographic phase retrieval problem in situations where the measurements are affected by a combination of Poisson and Gaussian noise, which commonly occurs in optical imaging systems. To address this problem, we propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior. Specifically, we formulate the PR problem as an optimization problem that incorporates both data fidelity and regularization terms. We calculate the gradient of the log-likelihood function for PR and determine its corresponding Lipschitz constant. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm. The results of our simulation experiments on three different datasets show the following: 1) By using the PG likelihood model, the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihood. 2) The proposed score-based image prior method, performs better than the method based on denoising diffusion probabilistic model (DDPM), as well as plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).
We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, capturing representations from the input data thoroughly. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.