In many applications, it is of interest to identify a parsimonious set of features, or panel, from multiple candidates that achieves a desired level of performance in predicting a response. This task is often complicated in practice by missing data arising from the sampling design or other random mechanisms. Most recent work on variable selection in missing data contexts relies in some part on a finite-dimensional statistical model, e.g., a generalized or penalized linear model. In cases where this model is misspecified, the selected variables may not all be truly scientifically relevant and can result in panels with suboptimal classification performance. To address this limitation, we propose a nonparametric variable selection algorithm combined with multiple imputation to develop flexible panels in the presence of missing-at-random data. We outline strategies based on the proposed algorithm that achieve control of commonly used error rates. Through simulations, we show that our proposal has good operating characteristics and results in panels with higher classification and variable selection performance compared to several existing penalized regression approaches in cases where a generalized linear model is misspecified. Finally, we use the proposed method to develop biomarker panels for separating pancreatic cysts with differing malignancy potential in a setting where complicated missingness in the biomarkers arose due to limited specimen volumes.
High-dimensional data are routinely collected in many areas. We are particularly interested in Bayesian classification models in which one or more variables are imbalanced. Current Markov chain Monte Carlo algorithms for posterior computation are inefficient as $n$ and/or $p$ increase due to worsening time per step and mixing rates. One strategy is to use a gradient-based sampler to improve mixing while using data sub-samples to reduce per-step computational complexity. However, usual sub-sampling breaks down when applied to imbalanced data. Instead, we generalize piece-wise deterministic Markov chain Monte Carlo algorithms to include importance-weighted and mini-batch sub-sampling. These approaches maintain the correct stationary distribution with arbitrarily small sub-samples, and substantially outperform current competitors. We provide theoretical support and illustrate gains in simulated and real data applications.
Various methods have recently been proposed to estimate causal effects with confidence intervals that are uniformly valid over a set of data generating processes when high-dimensional nuisance models are estimated by post-model-selection or machine learning estimators. These methods typically require that all the confounders are observed to ensure identification of the effects. We contribute by showing how valid semiparametric inference can be obtained in the presence of unobserved confounders and high-dimensional nuisance models. We propose uncertainty intervals which allow for unobserved confounding, and show that the resulting inference is valid when the amount of unobserved confounding is small relative to the sample size; the latter is formalized in terms of convergence rates. Simulation experiments illustrate the finite sample properties of the proposed intervals and investigate an alternative procedure that improves the empirical coverage of the intervals when the amount of unobserved confounding is large. Finally, a case study on the effect of smoking during pregnancy on birth weight is used to illustrate the use of the methods introduced to perform a sensitivity analysis to unobserved confounding.
The Kuznetsov equation is a classical wave model of acoustics that incorporates quadratic gradient nonlinearities. When its strong damping vanishes, it undergoes a singular behavior change, switching from a parabolic-like to a hyperbolic quasilinear evolution. In this work, we establish for the first time the optimal error bounds for its finite element approximation as well as a semi-implicit fully discrete approximation that are robust with respect to the vanishing damping parameter. The core of the new arguments lies in devising energy estimates directly for the error equation where one can more easily exploit the polynomial structure of the nonlinearities and compensate inverse estimates with smallness conditions on the error. Numerical experiments are included to illustrate the theoretical results.
Computer simulations (a.k.a. white-box models) are more indispensable than ever to model intricate engineering systems. However, computational models alone often fail to fully capture the complexities of reality. When physical experiments are accessible though, it is of interest to enhance the incomplete information offered by computational models. Gray-box modeling is concerned with the problem of merging information from data-driven (a.k.a. black-box) models and white-box (i.e., physics-based) models. In this paper, we propose to perform this task by using multi-fidelity surrogate models (MFSMs). A MFSM integrates information from models with varying computational fidelity into a new surrogate model. The multi-fidelity surrogate modeling framework we propose handles noise-contaminated data and is able to estimate the underlying noise-free high-fidelity function. Our methodology emphasizes on delivering precise estimates of the uncertainty in its predictions in the form of confidence and prediction intervals, by quantitatively incorporating the different types of uncertainty that affect the problem, arising from measurement noise and from lack of knowledge due to the limited experimental design budget on both the high- and low-fidelity models. Applied to gray-box modeling, our MFSM framework treats noisy experimental data as the high-fidelity and the white-box computational models as their low-fidelity counterparts. The effectiveness of our methodology is showcased through synthetic examples and a wind turbine application.
We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $\ell$ in an infinite heterogeneous medium, in a situation where the medium is only known in a box of diameter $L\gg\ell$ around the support of the charge. We propose a boundary condition that with overwhelming probability is (near) optimal with respect to scaling in terms of $\ell$ and $L$, in the setting where the medium is a sample from a stationary ensemble with a finite range of dependence (set to be unity and with the assumption that $\ell \gg 1$). The boundary condition is motivated by quantitative stochastic homogenization that allows for a multipole expansion [BGO20]. This work extends [LO21], the algorithm in which is optimal in two dimension, and thus we need to take quadrupoles, next to dipoles, into account. This in turn relies on stochastic estimates of second-order, next to first-order, correctors. These estimates are provided for finite range ensembles under consideration, based on an extension of the semi-group approach of [GO15].
Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $T u$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: //github.com/LMBTough/GE-advGAN
This paper introduces the Trinary decision tree, an algorithm designed to improve the handling of missing data in decision tree regressors and classifiers. Unlike other approaches, the Trinary decision tree does not assume that missing values contain any information about the response. Both theoretical calculations on estimator bias and numerical illustrations using real data sets are presented to compare its performance with established algorithms in different missing data scenarios (Missing Completely at Random (MCAR), and Informative Missingness (IM)). Notably, the Trinary tree outperforms its peers in MCAR settings, especially when data is only missing out-of-sample, while lacking behind in IM settings. A hybrid model, the TrinaryMIA tree, which combines the Trinary tree and the Missing In Attributes (MIA) approach, shows robust performance in all types of missingness. Despite the potential drawback of slower training speed, the Trinary tree offers a promising and more accurate method of handling missing data in decision tree algorithms.
The STATIS method, proposed by L'Hermier des Plantes and Escoufier, is used to analyze multiple data tables in which is very common that each of the tables have information concerning the same set of individuals. The differences and similitudes between said tables are analyzed by means of a structure called the \emph{compromise}. In this paper we present a new algorithm for applying the STATIS method when the input consists of interval data. This proposal is based on Moore's interval arithmetic and the Centers Method for Principal Component Analysis with interval data, proposed by Cazes el al. \cite{cazes1997}. In addition to presenting the INTERSTATIS method in an algorithmic way, an execution example is shown, alongside the interpretation of its results.
This paper proposes a new approach to fit a linear regression for symbolic internal-valued variables, which improves both the Center Method suggested by Billard and Diday in \cite{BillardDiday2000} and the Center and Range Method suggested by Lima-Neto, E.A. and De Carvalho, F.A.T. in \cite{Lima2008, Lima2010}. Just in the Centers Method and the Center and Range Method, the new methods proposed fit the linear regression model on the midpoints and in the half of the length of the intervals as an additional variable (ranges) assumed by the predictor variables in the training data set, but to make these fitments in the regression models, the methods Ridge Regression, Lasso, and Elastic Net proposed by Tibshirani, R. Hastie, T., and Zou H in \cite{Tib1996, HastieZou2005} are used. The prediction of the lower and upper of the interval response (dependent) variable is carried out from their midpoints and ranges, which are estimated from the linear regression models with shrinkage generated in the midpoints and the ranges of the interval-valued predictors. Methods presented in this document are applied to three real data sets cardiologic interval data set, Prostate interval data set and US Murder interval data set to then compare their performance and facility of interpretation regarding the Center Method and the Center and Range Method. For this evaluation, the root-mean-squared error and the correlation coefficient are used. Besides, the reader may use all the methods presented herein and verify the results using the {\tt RSDA} package written in {\tt R} language, that can be downloaded and installed directly from {\tt CRAN} \cite{Rod2014}.