亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an automatic layout generation framework in advanced CMOS technologies. The framework extends the template-and-grid-based layout generation methodology with the following additional techniques applied to produce optimal layouts more effectively. First, layout templates and grids are dynamically created and adjusted during runtime to serve various structural, functional, and design requirements. Virtual instances support the dynamic template-and-grid-based layout generation process. The framework also implements various post-processing functions to handle process-specific requirements efficiently. The post-processing functions include cut/dummy pattern generation and multiple-patterning adjustment. The generator description capability is enhanced with circular grid indexing/slicing and conditional conversion operators. The layout generation framework is applied to various design examples and generates DRC/LVS clean layouts automatically in multiple CMOS technologies.

相關內容

We propose BareSkinNet, a novel method that simultaneously removes makeup and lighting influences from the face image. Our method leverages a 3D morphable model and does not require a reference clean face image or a specified light condition. By combining the process of 3D face reconstruction, we can easily obtain 3D geometry and coarse 3D textures. Using this information, we can infer normalized 3D face texture maps (diffuse, normal, roughness, and specular) by an image-translation network. Consequently, reconstructed 3D face textures without undesirable information will significantly benefit subsequent processes, such as re-lighting or re-makeup. In experiments, we show that BareSkinNet outperforms state-of-the-art makeup removal methods. In addition, our method is remarkably helpful in removing makeup to generate consistent high-fidelity texture maps, which makes it extendable to many realistic face generation applications. It can also automatically build graphic assets of face makeup images before and after with corresponding 3D data. This will assist artists in accelerating their work, such as 3D makeup avatar creation.

This work-in-progress report presents both the design and partial evaluation of distributed execution indexing, a technique for microservice applications that precisely identifies dynamic instances of inter-service remote procedure calls (RPCs). Such an indexing scheme is critical for request-level fault injection techniques, which aim to automatically find failure-handling bugs in microservice applications.Distributed execution indexes enable granular specification of request-level faults, while also establishing a correspondence between inter-service RPCs across multiple executions, as is required to perform a systematic search of the fault space.In this paper, we formally define the general concept of a distributed execution index, which can be parameterized on different ways of identifying an RPC in a single service. We identify an instantiation that maintains precision in the presence of a variety of program structure complexities such as loops, function indirection, and concurrency with scheduling nondeterminism. We demonstrate that this particular instantiation addresses gaps in the state-of-the-art in request-level fault injection and show that they are all special cases of distributed execution indexing. We discuss the implementation challenges and provide an implementation of distributed execution indexing as an extension of \Filibuster{}, a resilience testing tool for microservice applications for the Java programming language, which supports fault injection for gRPC and HTTP.

We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.

Machine learning (ML) algorithms are gaining increased importance in many academic and industrial applications, and such algorithms are, accordingly, becoming common components in computer science curricula. Learning ML is challenging not only due to its complex mathematical and algorithmic aspects, but also due to a) the complexity of using correctly these algorithms in the context of real-life situations and b) the understanding of related social and ethical issues. Cognitive biases are phenomena of the human brain that may cause erroneous perceptions and irrational decision-making processes. As such, they have been researched thoroughly in the context of cognitive psychology and decision making; they do, however, have important implications for computer science education as well. One well-known cognitive bias, first described by Kahneman and Tversky, is the base rate neglect bias, according to which humans fail to consider the base rate of the underlaying phenomena when evaluating conditional probabilities. In this paper, we explore the expression of the base rate neglect bias in ML education. Specifically, we show that about one third of students in an Introduction to ML course, from varied backgrounds (computer science students and teachers, data science, engineering, social science and digital humanities), fail to correctly evaluate ML algorithm performance due to the base rate neglect bias. This failure rate should alert educators and promote the development of new pedagogical methods for teaching ML algorithm performance.

Robust modules guarantee to do only what they are supposed to do - even in the presence of untrusted, malicious clients, and considering not just the direct behaviour of individual methods, but also the emergent behaviour from calls to more than one method. Necessity is a language for specifying robustness, based on novel necessity operators capturing temporal implication, and a proof logic that derives explicit robustness specifications from functional specifications. Soundness and an exemplar proof are mechanised in Coq.

The method of common lines is a well-established reconstruction technique in cryogenic electron microscopy (cryo-EM), which can be used to extract the relative orientations of an object in tomographic projection images from different directions. In this paper, we deal with an analogous problem in optical diffraction tomography. Based on the Fourier diffraction theorem, we show that rigid motions, i.e., a map composed of rotations and translations, can be determined by detecting common circles in the Fourier-transformed data. We introduce two methods based on the idea of identifying common circles to reconstruct the object motion: While the first one is motivated by the common line approach for projection images and detects the relative orientation by the shape of the common circles in the two images, the second one assumes a smooth motion over time and calculates the angular velocity of the rotational motion from an infinitesimal version of the common circle method. Interestingly, using the stereographic projection, both methods can be reformulated as common line methods, but these lines are, in contrast to those used in cryo-EM, not confined to pass through the origin and allow for a full reconstruction of the relative orientation. Numerical proof-of-the-concept examples demonstrate the performance of our reconstruction methods.

Quadruped robots are usually equipped with additional arms for manipulation, negatively impacting price and weight. On the other hand, the requirements of legged locomotion mean that the legs of such robots often possess the needed torque and precision to perform manipulation. In this paper, we present a novel design for a small-scale quadruped robot equipped with two leg-mounted manipulators inspired by crustacean chelipeds and knuckle-walker forelimbs. By making use of the actuators already present in the legs, we can achieve manipulation using only 3 additional motors per limb. The design enables the use of small and inexpensive actuators relative to the leg motors, further reducing cost and weight. The moment of inertia impact on the leg is small thanks to an integrated cable/pulley system. As we show in a suite of tele-operation experiments, the robot is capable of performing single- and dual-limb manipulation, as well as transitioning between manipulation modes. The proposed design performs similarly to an additional arm while weighing and costing 5 times less per manipulator and enabling the completion of tasks requiring 2 manipulators.

US wind power generation has grown significantly over the last decades, both in number and average size of operating turbines. A lower specific power, i.e. larger rotor blades relative to wind turbine capacities, allows to increase capacity factors and to reduce cost. However, this development also reduces system efficiency, i.e. the share of power in the wind flowing through rotor swept areas which is converted to electricity. At the same time, this may also decrease output power density, the amount of electric power generated per unit of rotor swept area. In this study, we present a decomposition of historical US wind power generation data for the period 2001--2021 to examine to which extent the decrease in specific power affected system efficiency and output power density. Furthermore, we decompose the wind power available to turbines into changes due to new locations and the effect of changes in average hub heights.

In today's technological era, document images play an important and integral part in our day to day life, and specifically with the surge of Covid-19, digitally scanned documents have become key source of communication, thus avoiding any sort of infection through physical contact. Storage and transmission of scanned document images is a very memory intensive task, hence compression techniques are being used to reduce the image size before archival and transmission. To extract information or to operate on the compressed images, we have two ways of doing it. The first way is to decompress the image and operate on it and subsequently compress it again for the efficiency of storage and transmission. The other way is to use the characteristics of the underlying compression algorithm to directly process the images in their compressed form without involving decompression and re-compression. In this paper, we propose a novel idea of developing an OCR for CCITT (The International Telegraph and Telephone Consultative Committee) compressed machine printed TIFF document images directly in the compressed domain. After segmenting text regions into lines and words, HMM is applied for recognition using three coding modes of CCITT- horizontal, vertical and the pass mode. Experimental results show that OCR on pass modes give a promising results.

Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.

北京阿比特科技有限公司