In this paper, we present our finding that prepending a Task-Agnostic Prefix Prompt (TAPP) to the input improves the instruction-following ability of various Large Language Models (LLMs) during inference. TAPP is different from canonical prompts for LLMs in that it is a fixed prompt prepended to the beginning of every input regardless of the target task for zero-shot generalization. We observe that both base LLMs (i.e. not fine-tuned to follow instructions) and instruction-tuned models benefit from TAPP, resulting in 34.58% and 12.26% improvement on average, respectively. This implies that the instruction-following ability of LLMs can be improved during inference time with a fixed prompt constructed with simple heuristics. We hypothesize that TAPP assists language models to better estimate the output distribution by focusing more on the instruction of the target task during inference. In other words, such ability does not seem to be sufficiently activated in not only base LLMs but also many instruction-fine-tuned LLMs. All experiments are reproducible from //github.com/seonghyeonye/TAPP.
In this paper, we introduce an authorship attribution method called Authorial Language Models (ALMs) that involves identifying the most likely author of a questioned document based on the perplexity of the questioned document calculated for a set of causal language models fine-tuned on the writings of a set of candidate author. We benchmarked ALMs against state-of-art-systems using the CCAT50 dataset and the Blogs50 datasets. We find that ALMs achieves a macro-average accuracy score of 83.6% on Blogs50, outperforming all other methods, and 74.9% on CCAT50, matching the performance of the best method. To assess the performance of ALMs on shorter texts, we also conducted text ablation testing. We found that to reach a macro-average accuracy of 70%, ALMs needs 40 tokens on Blogs50 and 400 tokens on CCAT50, while to reach 60% ALMs requires 20 tokens on Blogs50 and 70 tokens on CCAT50.
In our research, we pioneer a novel approach to evaluate the effectiveness of jailbreak attacks on Large Language Models (LLMs), such as GPT-4 and LLaMa2, diverging from traditional robustness-focused binary evaluations. Our study introduces two distinct evaluation frameworks: a coarse-grained evaluation and a fine-grained evaluation. Each framework, using a scoring range from 0 to 1, offers a unique perspective, enabling a more comprehensive and nuanced evaluation of attack effectiveness and empowering attackers to refine their attack prompts with greater understanding. Furthermore, we have developed a comprehensive ground truth dataset specifically tailored for jailbreak tasks. This dataset not only serves as a crucial benchmark for our current study but also establishes a foundational resource for future research, enabling consistent and comparative analyses in this evolving field. Upon meticulous comparison with traditional evaluation methods, we discovered that our evaluation aligns with the baseline's trend while offering a more profound and detailed assessment. We believe that by accurately evaluating the effectiveness of attack prompts in the Jailbreak task, our work lays a solid foundation for assessing a wider array of similar or even more complex tasks in the realm of prompt injection, potentially revolutionizing this field.
Random binning is a powerful and widely used tool in information theory. In this paper, considering the Tsallis measures, we examine the output statistics of random binning (OSRB). Using the OSRB framework, the achievable rate region of the wiretap channel with Tsallis divergence as a security measure is investigated.
In this paper, we introduce \emph{refined Direct Preference Optimization} (rDPO), a method for improving the behavioral alignment of Large Language Models (LLMs) without the need for human-annotated data. The method involves creating synthetic data using self-critique prompting by a teacher LLM and then utilising a generalized DPO loss function to distil to a student LLM. The loss function incorporates an additional external reward model to improve the quality of synthetic data, making rDPO robust to potential noise in the synthetic dataset. rDPO is shown to be effective in a diverse set of behavioural alignment tasks, such as improved safety, robustness against role-playing, and reduced sycophancy. Code to be released at //github.com/vicgalle/refined-dpo.
In this paper, we propose a novel approach to Bayesian Experimental Design (BED) for non-exchangeable data that formulates it as risk-sensitive policy optimization. We develop the Inside-Out SMC^2 algorithm that uses a nested sequential Monte Carlo (SMC) estimator of the expected information gain and embeds it into a particle Markov chain Monte Carlo (pMCMC) framework to perform gradient-based policy optimization. This is in contrast to recent approaches that rely on biased estimators of the expected information gain (EIG) to amortize the cost of experiments by learning a design policy in advance. Numerical validation on a set of dynamical systems showcases the efficacy of our method in comparison to other state-of-the-art strategies.
In this paper, we propose a methodology for the analysis of questionnaire data along with its application on discovering insights from investor data motivated by a day trading competition. The questionnaire includes categorical questions, which are reduced to binary questions, 'yes' or 'no'. The methodology reduces dimensionality by grouping questions and participants with similar responses using clustering analysis. Rule discovery was performed by using a conversion rate metric. Innovative visual representations were proposed to validate the cluster analysis and the relation discovery between questions. When crossing with financial data, additional insights were revealed related to the recognized clusters.
In this paper, we introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations. MAAD utilizes a surrogate reward signal, which can be derived from various sources such as adversarial games, trajectory matching objectives, or optimal transport criteria. To compensate for the non-availability of expert actions, we rely on an inverse dynamics model that infers plausible actions distribution given the expert's state-state transitions; we regularize the imitator's policy by aligning it to the inferred action distribution. MAAD leads to significantly improved sample efficiency and stability. We demonstrate its effectiveness in a number of MuJoCo environments, both int the OpenAI Gym and the DeepMind Control Suite. We show that it requires considerable fewer interactions to achieve expert performance, outperforming current state-of-the-art on-policy methods. Remarkably, MAAD often stands out as the sole method capable of attaining expert performance levels, underscoring its simplicity and efficacy.
A feedback vertex set (FVS) in a digraph is a subset of vertices whose removal makes the digraph acyclic. In other words, it hits all cycles in the digraph. Lokshtanov et al. [TALG '21] gave a factor 2 randomized approximation algorithm for finding a minimum weight FVS in tournaments. We generalize the result by presenting a factor $2\alpha$ randomized approximation algorithm for finding a minimum weight FVS in digraphs of independence number $\alpha$; a generalization of tournaments which are digraphs with independence number $1$. Using the same framework, we present a factor $2$ randomized approximation algorithm for finding a minimum weight Subset FVS in tournaments: given a vertex subset $S$ in addition to the graph, find a subset of vertices that hits all cycles containing at least one vertex in $S$. Note that FVS in tournaments is a special case of Subset FVS in tournaments in which $S = V(T)$.
Despite the recent success associated with Large Language Models~(LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of \textit{importance score calculation} and \textit{eviction scope construction}. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a \underline{r}\underline{o}bust \underline{c}ache \underline{o}mission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at \url{//github.com/DRSY/EasyKV}.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.