Phase retrieval is the numerical procedure of recovering a complex-valued signal from knowledge about its amplitude and some additional information. Here, an indirect registration procedure, based on the large deformation diffeomorphic metric mapping (LDDMM) formalism, is investigated as a phase retrieval method for coherent diffractive imaging. The method attempts to find a deformation which transforms an initial, template image to match an unknown target image by comparing the diffraction pattern to the data. The exterior calculus framework is used to treat different types of deformations in a unified and coordinate-free way. The algorithm performance with respect to measurement noise, image topology, and particular action are explored through numerical examples.
We introduce an efficient numerical implementation of a Markov Chain Monte Carlo method to sample a probability distribution on a manifold (introduced theoretically in Zappa, Holmes-Cerfon, Goodman (2018)), where the manifold is defined by the level set of constraint functions, and the probability distribution may involve the pseudodeterminant of the Jacobian of the constraints, as arises in physical sampling problems. The algorithm is easy to implement and scales well to problems with thousands of dimensions and with complex sets of constraints provided their Jacobian retains sparsity. The algorithm uses direct linear algebra and requires a single matrix factorization per proposal point, which enhances its efficiency over previously proposed methods but becomes the computational bottleneck of the algorithm in high dimensions. We test the algorithm on several examples inspired by soft-matter physics and materials science to study its complexity and properties.
Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet-Alignment Loss (TAL) relaxes the conventional triplet-ranking loss with hardest negatives, which tends to rapidly overfit NC, to a log-exponential upper bound over all negatives, thus preventing the model from overemphasizing false image-text pairs. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets.
Numerical methods such as the Finite Element Method (FEM) have been successfully adapted to utilize the computational power of GPU accelerators. However, much of the effort around applying FEM to GPU's has been focused on high-order FEM due to higher arithmetic intensity and order of accuracy. For applications such as the simulation of subsurface processes, high levels of heterogeneity results in high-resolution grids characterized by highly discontinuous (cell-wise) material property fields. Moreover, due to the significant uncertainties in the characterization of the domain of interest, e.g. geologic reservoirs, the benefits of high order accuracy are reduced, and low-order methods are typically employed. In this study, we present a strategy for implementing highly performant low-order matrix-free FEM operator kernels in the context of the conjugate gradient (CG) method. Performance results of matrix-free Laplace and isotropic elasticity operator kernels are presented and are shown to compare favorably to matrix-based SpMV operators on V100, A100, and MI250X GPUs.
Due to its computational complexity, graph cuts for cluster detection and identification are used mostly in the form of convex relaxations. We propose to utilize the original graph cuts such as Ratio, Normalized or Cheeger Cut in order to detect clusters in weighted undirected graphs by restricting the graph cut minimization to the subset of $st$-MinCut partitions. Incorporating a vertex selection technique and restricting optimization to tightly connected clusters, we therefore combine the efficient computability of $st$-MinCuts and the intrinsic properties of Gomory-Hu trees with the cut quality of the original graph cuts, leading to linear runtime in the number of vertices and quadratic in the number of edges. Already in simple scenarios, the resulting algorithm Xist is able to approximate graph cut values better empirically than spectral clustering or comparable algorithms, even for large network datasets. We showcase its applicability by segmenting images from cell biology and provide empirical studies of runtime and classification rate.
Materials language processing (MLP) is one of the key facilitators of materials science research, as it enables the extraction of structured information from massive materials science literature. Prior works suggested high-performance MLP models for text classification, named entity recognition (NER), and extractive question answering (QA), which require complex model architecture, exhaustive fine-tuning and a large number of human-labelled datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines where the complex architectures of prior MLP models are replaced with strategic designs of prompt engineering. First, we develop a GPT-enabled document classification method for screening relevant documents, achieving comparable accuracy and reliability compared to prior models, with only small dataset. Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance on most of entities in three open datasets. Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations. While our findings confirm the potential of GPT-enabled MLP models as well as their value in terms of reliability and practicability, our scientific methods and systematic approach are applicable to any materials science domain to accelerate the information extraction of scientific literature.
We introduce a generalized information criterion that contains other well-known information criteria, such as Bayesian information Criterion (BIC) and Akaike information criterion (AIC), as special cases. Furthermore, the proposed spectral information criterion (SIC) is also more general than the other information criteria, e.g., since the knowledge of a likelihood function is not strictly required. SIC extracts geometric features of the error curve and, as a consequence, it can be considered an automatic elbow detector. SIC provides a subset of all possible models, with a cardinality that often is much smaller than the total number of possible models. The elements of this subset are elbows of the error curve. A practical rule for selecting a unique model within the sets of elbows is suggested as well. Theoretical invariance properties of SIC are analyzed. Moreover, we test SIC in ideal scenarios where provides always the optimal expected results. We also test SIC in several numerical experiments: some involving synthetic data, and two experiments involving real datasets. They are all real-world applications such as clustering, variable selection, or polynomial order selection, to name a few. The results show the benefits of the proposed scheme. Matlab code related to the experiments is also provided. Possible future research lines are finally discussed.
A central problem in computational statistics is to convert a procedure for sampling combinatorial from an objects into a procedure for counting those objects, and vice versa. Weconsider sampling problems coming from *Gibbs distributions*, which are probability distributions of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_\min, \beta_\max]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The *partition function* is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters are the log partition ratio $q = \log \tfrac{Z(\beta_\max)}{Z(\beta_\min)}$ and the vector of counts $c_x = |H^{-1}(x)|$. Our first result is an algorithm to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\epsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\epsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters). We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. We develop a key subroutine for global estimation of the partition function. Specifically, we produce a data structure to estimate $Z(\beta)$ for \emph{all} values $\beta$, without further samples. Constructing the data structure requires $O(\frac{q \log n}{\epsilon^2})$ samples for general Gibbs distributions and $O(\frac{n^2 \log n}{\epsilon^2} + n \log q)$ samples for integer-valued distributions. This improves over a prior algorithm of Kolmogorov (2018) which computes the single point estimate $Z(\beta_\max)$ using $\tilde O(\frac{q}{\epsilon^2})$ samples. We also show that this complexity is optimal as a function of $n$ and $q$ up to logarithmic terms.
The stripe noise existing in remote sensing images badly degrades the visual quality and restricts the precision of data analysis. Therefore, many destriping models have been proposed in recent years. In contrast to these existing models, in this paper, we propose a nonconvex model with a DC function (i.e., the difference of convex functions) structure to remove the strip noise. To solve this model, we make use of the DC structure and apply an inexact proximal majorization-minimization algorithm with each inner subproblem solved by the alternating direction method of multipliers. It deserves mentioning that we design an implementable stopping criterion for the inner subproblem, while the convergence can still be guaranteed. Numerical experiments demonstrate the superiority of the proposed model and algorithm.
Optimal transport has gained much attention in image processing field, such as computer vision, image interpolation and medical image registration. Recently, Bredies et al. (ESAIM:M2AN 54:2351-2382, 2020) and Schmitzer et al. (IEEE T MED IMAGING 39:1626-1635, 2019) established the framework of optimal transport regularization for dynamic inverse problems. In this paper, we incorporate Wasserstein distance, together with total variation, into static inverse problems as a prior regularization. The Wasserstein distance formulated by Benamou-Brenier energy measures the similarity between the given template and the reconstructed image. Also, we analyze the existence of solutions of such variational problem in Radon measure space. Moreover, the first-order primal-dual algorithm is constructed for solving this general imaging problem in a specific grid strategy. Finally, numerical experiments for undersampled MRI reconstruction are presented which show that our proposed model can recover images well with high quality and structure preservation.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.