亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an efficient numerical implementation of a Markov Chain Monte Carlo method to sample a probability distribution on a manifold (introduced theoretically in Zappa, Holmes-Cerfon, Goodman (2018)), where the manifold is defined by the level set of constraint functions, and the probability distribution may involve the pseudodeterminant of the Jacobian of the constraints, as arises in physical sampling problems. The algorithm is easy to implement and scales well to problems with thousands of dimensions and with complex sets of constraints provided their Jacobian retains sparsity. The algorithm uses direct linear algebra and requires a single matrix factorization per proposal point, which enhances its efficiency over previously proposed methods but becomes the computational bottleneck of the algorithm in high dimensions. We test the algorithm on several examples inspired by soft-matter physics and materials science to study its complexity and properties.

相關內容

The multiple scattering theory (MST) is a Green's function method that has been widely used in electronic structure calculations for crystalline disordered systems. The key property of the MST method is the scattering path matrix (SPM) that characterizes the Green's function within a local solution representation. This paper studies various approximations of the SPM, under the condition that an appropriate reference is used for perturbation. In particular, we justify the convergence of the SPM approximations with respect to the size of scattering region and scattering length of reference, which are the central numerical parameters to achieve a linear scaling method with MST. We also present some numerical experiments on several typical systems to support the theory.

Discrete particle simulations have become the standard in science and industrial applications exploring the properties of particulate systems. Most of such simulations rely on the concept of interacting spherical particles to describe the properties of particulates, although, the correct representation of the nonspherical particle shape is crucial for a number of applications. In this work we describe the implementation of clumps, i.e. assemblies of rigidly connected spherical particles, which can approximate given nonspherical shapes, within the \textit{MercuryDPM} particle dynamics code. \textit{MercuryDPM} contact detection algorithm is particularly efficient for polydisperse particle systems, which is essential for multilevel clumps approximating complex surfaces. We employ the existing open-source \texttt{CLUMP} library to generate clump particles. We detail the pre-processing tools providing necessary initial data, as well as the necessary adjustments of the algorithms of contact detection, collision/migration and numerical time integration. The capabilities of our implementation are illustrated for a variety of examples.

This paper develops an updatable inverse probability weighting (UIPW) estimation for the generalized linear models with response missing at random in streaming data sets. A two-step online updating algorithm is provided for the proposed method. In the first step we construct an updatable estimator for the parameter in propensity function and hence obtain an updatable estimator of the propensity function; in the second step we propose an UIPW estimator with the inverse of the updating propensity function value at each observation as the weight for estimating the parameter of interest. The UIPW estimation is universally applicable due to its relaxation on the constraint on the number of data batches. It is shown that the proposed estimator is consistent and asymptotically normal with the same asymptotic variance as that of the oracle estimator, and hence the oracle property is obtained. The finite sample performance of the proposed estimator is illustrated by the simulation and real data analysis. All numerical studies confirm that the UIPW estimator performs as well as the batch learner.

We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Lastly, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.

Analysis of higher-order organizations, usually small connected subgraphs called motifs, is a fundamental task on complex networks. This paper studies a new problem of testing higher-order clusterability: given query access to an undirected graph, can we judge whether this graph can be partitioned into a few clusters of highly-connected motifs? This problem is an extension of the former work proposed by Czumaj et al. (STOC' 15), who recognized cluster structure on graphs using the framework of property testing. In this paper, a good graph cluster on high dimensions is first defined for higher-order clustering. Then, query lower bound is given for testing whether this kind of good cluster exists. Finally, an optimal sublinear-time algorithm is developed for testing clusterability based on triangles.

Information geometry is a study of statistical manifolds, that is, spaces of probability distributions from a geometric perspective. Its classical information-theoretic applications relate to statistical concepts such as Fisher information, sufficient statistics, and efficient estimators. Today, information geometry has emerged as an interdisciplinary field that finds applications in diverse areas such as radar sensing, array signal processing, quantum physics, deep learning, and optimal transport. This article presents an overview of essential information geometry to initiate an information theorist, who may be unfamiliar with this exciting area of research. We explain the concepts of divergences on statistical manifolds, generalized notions of distances, orthogonality, and geodesics, thereby paving the way for concrete applications and novel theoretical investigations. We also highlight some recent information-geometric developments, which are of interest to the broader information theory community.

We consider Gibbs distributions, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The partition function is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs, independent sets, and perfect matchings. As a key subroutine, we also develop algorithms to compute the partition function $Z$ using $\tilde O(\frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and using $\tilde O(\frac{n^2}{\varepsilon^2})$ samples for integer-valued distributions.

In copula models the marginal distributions and copula function are specified separately. We treat these as two modules in a modular Bayesian inference framework, and propose conducting modified Bayesian inference by ``cutting feedback''. Cutting feedback limits the influence of potentially misspecified modules in posterior inference. We consider two types of cuts. The first limits the influence of a misspecified copula on inference for the marginals, which is a Bayesian analogue of the popular Inference for Margins (IFM) estimator. The second limits the influence of misspecified marginals on inference for the copula parameters by using a rank likelihood to define the cut model. We establish that if only one of the modules is misspecified, then the appropriate cut posterior gives accurate uncertainty quantification asymptotically for the parameters in the other module. Computation of the cut posteriors is difficult, and new variational inference methods to do so are proposed. The efficacy of the new methodology is demonstrated using both simulated data and a substantive multivariate time series application from macroeconomic forecasting. In the latter, cutting feedback from misspecified marginals to a 1096 dimension copula improves posterior inference and predictive accuracy greatly, compared to conventional Bayesian inference.

A myriad of approaches have been proposed to characterise the mesoscale structure of networks - most often as a partition based on patterns variously called communities, blocks, or clusters. Clearly, distinct methods designed to detect different types of patterns may provide a variety of answers to the network's mesoscale structure. Yet, even multiple runs of a given method can sometimes yield diverse and conflicting results, producing entire landscapes of partitions which potentially include multiple (locally optimal) mesoscale explanations of the network. Such ambiguity motivates a closer look at the ability of these methods to find multiple qualitatively different 'ground truth' partitions in a network. Here, we propose the stochastic cross-block model (SCBM), a generative model which allows for two distinct partitions to be built into the mesoscale structure of a single benchmark network. We demonstrate a use case of the benchmark model by appraising the power of stochastic block models (SBMs) to detect implicitly planted coexisting bi-community and core-periphery structures of different strengths. Given our model design and experimental set-up, we find that the ability to detect the two partitions individually varies by SBM variant and that coexistence of both partitions is recovered only in a very limited number of cases. Our findings suggest that in most instances only one - in some way dominating - structure can be detected, even in the presence of other partitions. They underline the need for considering entire landscapes of partitions when different competing explanations exist and motivate future research to advance partition coexistence detection methods. Our model also contributes to the field of benchmark networks more generally by enabling further exploration of the ability of new and existing methods to detect ambiguity in the mesoscale structure of networks.

Bayesian optimization is an effective method for optimizing expensive-to-evaluate black-box functions. High-dimensional problems are particularly challenging as the surrogate model of the objective suffers from the curse of dimensionality, which makes accurate modeling difficult. We propose a group testing approach to identify active variables to facilitate efficient optimization in these domains. The proposed algorithm, Group Testing Bayesian Optimization (GTBO), first runs a testing phase where groups of variables are systematically selected and tested on whether they influence the objective. To that end, we extend the well-established theory of group testing to functions of continuous ranges. In the second phase, GTBO guides optimization by placing more importance on the active dimensions. By exploiting the axis-aligned subspace assumption, GTBO is competitive against state-of-the-art methods on several synthetic and real-world high-dimensional optimization tasks. Furthermore, GTBO aids in the discovery of active parameters in applications, thereby enhancing practitioners' understanding of the problem at hand.

北京阿比特科技有限公司