亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Lastly, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.

相關內容

We propose a model to flexibly estimate joint tail properties by exploiting the convergence of an appropriately scaled point cloud onto a compact limit set. Characteristics of the shape of the limit set correspond to key tail dependence properties. We directly model the shape of the limit set using Bezier splines, which allow flexible and parsimonious specification of shapes in two dimensions. We then fit the Bezier splines to data in pseudo-polar coordinates using Markov chain Monte Carlo, utilizing a limiting approximation to the conditional likelihood of the radii given angles. By imposing appropriate constraints on the parameters of the Bezier splines, we guarantee that each posterior sample is a valid limit set boundary, allowing direct posterior analysis of any quantity derived from the shape of the curve. Furthermore, we obtain interpretable inference on the asymptotic dependence class by using mixture priors with point masses on the corner of the unit box. Finally, we apply our model to bivariate datasets of extremes of variables related to fire risk and air pollution.

Categorical random variables can faithfully represent the discrete and uncertain aspects of data as part of a discrete latent variable model. Learning in such models necessitates taking gradients with respect to the parameters of the categorical probability distributions, which is often intractable due to their combinatorial nature. A popular technique to estimate these otherwise intractable gradients is the Log-Derivative trick. This trick forms the basis of the well-known REINFORCE gradient estimator and its many extensions. While the Log-Derivative trick allows us to differentiate through samples drawn from categorical distributions, it does not take into account the discrete nature of the distribution itself. Our first contribution addresses this shortcoming by introducing the CatLog-Derivative trick - a variation of the Log-Derivative trick tailored towards categorical distributions. Secondly, we use the CatLog-Derivative trick to introduce IndeCateR, a novel and unbiased gradient estimator for the important case of products of independent categorical distributions with provably lower variance than REINFORCE. Thirdly, we empirically show that IndeCateR can be efficiently implemented and that its gradient estimates have significantly lower bias and variance for the same number of samples compared to the state of the art.

Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.

It is well established that formulating an effective constraint model of a problem of interest is crucial to the efficiency with which it can subsequently be solved. Following from the observation that it is difficult, if not impossible, to know a priori which of a set of candidate models will perform best in practice, we envisage a system that explores the space of models through a process of reformulation from an initial model, guided by performance on a set of training instances from the problem class under consideration. We plan to situate this system in a refinement-based approach, where a user writes a constraint specification describing a problem above the level of abstraction at which many modelling decisions are made. In this position paper we set out our plan for an exploratory reformulation system, and discuss progress made so far.

State transformation problems such as compressing quantum information or breaking quantum commitments are fundamental quantum tasks. However, their computational difficulty cannot easily be characterized using traditional complexity theory, which focuses on tasks with classical inputs and outputs. To study the complexity of such state transformation tasks, we introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes. We use this framework to study the complexity of transforming one entangled state into another via local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic version of Uhlmann's theorem. Then, we prove structural results relating the complexity of the Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge protocols. The Uhlmann Transformation Problem allows us to characterize the complexity of a variety of tasks in quantum information processing, including decoding noisy quantum channels, breaking falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.

We introduce and study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer $\mathbf{x}^{*}$ for a function $f\colon X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^d$. In each round, the algorithm submits a pair of guesses, i.e., $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worse of the two guesses; i.e., ${\max} \left( f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}) \right) - f(\mathbf{x}^{*})$. The goal is to minimize the number of iterations required to find an $\varepsilon$-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function $f$ and set $X$ that incurs cost $O(d)$ and iteration complexity $O(d\log(1/\varepsilon)^2)$. Moreover, our dependence on $d$ is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur $\Omega(d)$ cost and iteration complexity.

We study the problems of testing and learning high-dimensional discrete convex sets. The simplest high-dimensional discrete domain where convexity is a non-trivial property is the ternary hypercube, $\{-1,0,1\}^n$. The goal of this work is to understand structural combinatorial properties of convex sets in this domain and to determine the complexity of the testing and learning problems. We obtain the following results. Structural: We prove nearly tight bounds on the edge boundary of convex sets in $\{0,\pm 1\}^n$, showing that the maximum edge boundary of a convex set is $\widetilde \Theta(n^{3/4}) \cdot 3^n$, or equivalently that every convex set has influence $\widetilde{O}(n^{3/4})$ and a convex set exists with influence $\Omega(n^{3/4})$. Learning and sample-based testing: We prove upper and lower bounds of $3^{\widetilde{O}(n^{3/4})}$ and $3^{\Omega(\sqrt{n})}$ for the task of learning convex sets under the uniform distribution from random examples. The analysis of the learning algorithm relies on our upper bound on the influence. Both the upper and lower bound also hold for the problem of sample-based testing with two-sided error. For sample-based testing with one-sided error we show that the sample-complexity is $3^{\Theta(n)}$. Testing with queries: We prove nearly matching upper and lower bounds of $3^{\widetilde{\Theta}(\sqrt{n})}$ for one-sided error testing of convex sets with non-adaptive queries.

Lawvere showed that generalised metric spaces are categories enriched over $[0, \infty]$, the quantale of the positive extended reals. The statement of enrichment is a quantitative analogue of being a preorder. Towards seeking a logic for quantitative metric reasoning, we investigate three $[0,\infty]$-valued propositional logics over the Lawvere quantale. The basic logical connectives shared by all three logics are those that can be interpreted in any quantale, viz finite conjunctions and disjunctions, tensor (addition for the Lawvere quantale) and linear implication (here a truncated subtraction); to these we add, in turn, the constant $1$ to express integer values, and scalar multiplication by a non-negative real to express general affine combinations. Quantitative equational logic can be interpreted in the third logic if we allow inference systems instead of axiomatic systems. For each of these logics we develop a natural deduction system which we prove to be decidably complete w.r.t. the quantale-valued semantics. The heart of the completeness proof makes use of the Motzkin transposition theorem. Consistency is also decidable; the proof makes use of Fourier-Motzkin elimination of linear inequalities. Strong completeness does not hold in general, even (as is known) for theories over finitely-many propositional variables; indeed even an approximate form of strong completeness in the sense of Pavelka or Ben Yaacov -- provability up to arbitrary precision -- does not hold. However, we can show it for theories axiomatized by a (not necessarily finite) set of judgements in normal form over a finite set of propositional variables when we restrict to models that do not map variables to $\infty$; the proof uses Hurwicz's general form of the Farkas' Lemma.

Graph-based interactive theorem provers offer a visual representation of proofs, explicitly representing the dependencies and inferences between each of the proof steps in a graph or hypergraph format. The number and complexity of these dependency links can determine how long it takes to verify the validity of the entire proof. Towards this end, we present a set of parallel algorithms for the formal verification of graph-based natural-deduction (ND) style proofs. We introduce a definition of layering that captures dependencies between the proof steps (nodes). Nodes in each layer can then be verified in parallel as long as prior layers have been verified. To evaluate the performance of our algorithms on proof graphs, we propose a framework for finding the performance bounds and patterns using directed acyclic network topologies (DANTs). This framework allows us to create concrete instances of DANTs for empirical evaluation of our algorithms. With this, we compare our set of parallel algorithms against a serial implementation with two experiments: one scaling both the problem size and the other scaling the number of threads. Our findings show that parallelization results in improved verification performance for certain DANT instances. We also show that our algorithms scale for certain DANT instances with respect to the number of threads.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司