Mixed Hamming packings are considered: the maximal cardinality given a minimum codeword Hamming distance of mixed codes is addressed via mixed integer programming models. Adopting the concept of contact graph from classical continuous sphere packing problems, a reduction technique for the models is introduced, which enables their efficient solution. Several best known upper bounds are improved and some of them are found to be sharp.
The versatility of Large Language Models (LLMs) on natural language understanding tasks has made them popular for research in social sciences. In particular, to properly understand the properties and innate personas of LLMs, researchers have performed studies that involve using prompts in the form of questions that ask LLMs of particular opinions. In this study, we take a cautionary step back and examine whether the current format of prompting enables LLMs to provide responses in a consistent and robust manner. We first construct a dataset that contains 693 questions encompassing 39 different instruments of persona measurement on 115 persona axes. Additionally, we design a set of prompts containing minor variations and examine LLM's capabilities to generate accurate answers, as well as consistency variations to examine their consistency towards simple perturbations such as switching the option order. Our experiments on 15 different open-source LLMs reveal that even simple perturbations are sufficient to significantly downgrade a model's question-answering ability, and that most LLMs have low negation consistency. Our results suggest that the currently widespread practice of prompting is insufficient to accurately capture model perceptions, and we discuss potential alternatives to improve such issues.
Large language models (LLMs) have demonstrated remarkable prediction performance for a growing array of tasks. However, their rapid proliferation and increasing opaqueness have created a growing need for interpretability. Here, we ask whether we can automatically obtain natural language explanations for black box text modules. A "text module" is any function that maps text to a scalar continuous value, such as a submodule within an LLM or a fitted model of a brain region. "Black box" indicates that we only have access to the module's inputs/outputs. We introduce Summarize and Score (SASC), a method that takes in a text module and returns a natural language explanation of the module's selectivity along with a score for how reliable the explanation is. We study SASC in 3 contexts. First, we evaluate SASC on synthetic modules and find that it often recovers ground truth explanations. Second, we use SASC to explain modules found within a pre-trained BERT model, enabling inspection of the model's internals. Finally, we show that SASC can generate explanations for the response of individual fMRI voxels to language stimuli, with potential applications to fine-grained brain mapping. All code for using SASC and reproducing results is made available on Github.
Deep biasing for the Transducer can improve the recognition performance of rare words or contextual entities, which is essential in practical applications, especially for streaming Automatic Speech Recognition (ASR). However, deep biasing with large-scale rare words remains challenging, as the performance drops significantly when more distractors exist and there are words with similar grapheme sequences in the bias list. In this paper, we combine the phoneme and textual information of rare words in Transducers to distinguish words with similar pronunciation or spelling. Moreover, the introduction of training with text-only data containing more rare words benefits large-scale deep biasing. The experiments on the LibriSpeech corpus demonstrate that the proposed method achieves state-of-the-art performance on rare word error rate for different scales and levels of bias lists.
Zero-shot audio captioning aims at automatically generating descriptive textual captions for audio content without prior training for this task. Different from speech recognition which translates audio content that contains spoken language into text, audio captioning is commonly concerned with ambient sounds, or sounds produced by a human performing an action. Inspired by zero-shot image captioning methods, we propose ZerAuCap, a novel framework for summarising such general audio signals in a text caption without requiring task-specific training. In particular, our framework exploits a pre-trained large language model (LLM) for generating the text which is guided by a pre-trained audio-language model to produce captions that describe the audio content. Additionally, we use audio context keywords that prompt the language model to generate text that is broadly relevant to sounds. Our proposed framework achieves state-of-the-art results in zero-shot audio captioning on the AudioCaps and Clotho datasets. Our code is available at //github.com/ExplainableML/ZerAuCap.
Mixture models arise in many regression problems, but most methods have seen limited adoption partly due to these algorithms' highly-tailored and model-specific nature. On the other hand, transformers are flexible, neural sequence models that present the intriguing possibility of providing general-purpose prediction methods, even in this mixture setting. In this work, we investigate the hypothesis that transformers can learn an optimal predictor for mixtures of regressions. We construct a generative process for a mixture of linear regressions for which the decision-theoretic optimal procedure is given by data-driven exponential weights on a finite set of parameters. We observe that transformers achieve low mean-squared error on data generated via this process. By probing the transformer's output at inference time, we also show that transformers typically make predictions that are close to the optimal predictor. Our experiments also demonstrate that transformers can learn mixtures of regressions in a sample-efficient fashion and are somewhat robust to distribution shifts. We complement our experimental observations by proving constructively that the decision-theoretic optimal procedure is indeed implementable by a transformer.
A significant limitation of the LTE-V2X and NR-V2X sidelink scheduling mechanisms is their difficulty coping with variations in inter packet arrival times, also known as aperiodic packets. This conflicts with the fundamental characteristics of most V2X services which are triggered based on an event. e.g. ETSI Cooperative Awareness Messages (CAMs) - vehicle kinematics, Cooperative Perception Messages (CPMs) - object sensing and Decentralised Event Notification Messages (DENMs) - event occurrences. Furthermore, network management techniques such as congestion control mechanisms can result in varied inter packet arrival times. To combat this, NR-V2X introduced a dynamic grant mechanism, which we show is ineffective unless there is background periodic traffic to stabilise the sensing history upon which the scheduler makes it decisions. The characteristics of V2X services make it implausible that such periodic application traffic will exist. To overcome this significant drawback, we demonstrate that the standardised scheduling algorithms can be made effective if the event triggered arrival rate of packets can be accurately predicted. These predictions can be used to tune the Resource Reservation Interval (RRI) parameter of the MAC scheduler to negate the negative impact of aperiodicity. Such an approach allows the scheduler to achieve comparable performance to a scenario where packets arrive periodically. To demonstrate the effectiveness of our approach, an ML model has been devised for the prediction of cooperative awareness messages, but the same principle can be abstracted to other V2X service types.
We present a novel diffusion-based approach to generate synthetic histopathological Whole Slide Images (WSIs) at an unprecedented gigapixel scale. Synthetic WSIs have many potential applications: They can augment training datasets to enhance the performance of many computational pathology applications. They allow the creation of synthesized copies of datasets that can be shared without violating privacy regulations. Or they can facilitate learning representations of WSIs without requiring data annotations. Despite this variety of applications, no existing deep-learning-based method generates WSIs at their typically high resolutions. Mainly due to the high computational complexity. Therefore, we propose a novel coarse-to-fine sampling scheme to tackle image generation of high-resolution WSIs. In this scheme, we increase the resolution of an initial low-resolution image to a high-resolution WSI. Particularly, a diffusion model sequentially adds fine details to images and increases their resolution. In our experiments, we train our method with WSIs from the TCGA-BRCA dataset. Additionally to quantitative evaluations, we also performed a user study with pathologists. The study results suggest that our generated WSIs resemble the structure of real WSIs.
Background: Automated segmentation of spinal MR images plays a vital role both scientifically and clinically. However, accurately delineating posterior spine structures presents challenges. Methods: This retrospective study, approved by the ethical committee, involved translating T1w and T2w MR image series into CT images in a total of n=263 pairs of CT/MR series. Landmark-based registration was performed to align image pairs. We compared 2D paired (Pix2Pix, denoising diffusion implicit models (DDIM) image mode, DDIM noise mode) and unpaired (contrastive unpaired translation, SynDiff) image-to-image translation using "peak signal to noise ratio" (PSNR) as quality measure. A publicly available segmentation network segmented the synthesized CT datasets, and Dice scores were evaluated on in-house test sets and the "MRSpineSeg Challenge" volumes. The 2D findings were extended to 3D Pix2Pix and DDIM. Results: 2D paired methods and SynDiff exhibited similar translation performance and Dice scores on paired data. DDIM image mode achieved the highest image quality. SynDiff, Pix2Pix, and DDIM image mode demonstrated similar Dice scores (0.77). For craniocaudal axis rotations, at least two landmarks per vertebra were required for registration. The 3D translation outperformed the 2D approach, resulting in improved Dice scores (0.80) and anatomically accurate segmentations in a higher resolution than the original MR image. Conclusion: Two landmarks per vertebra registration enabled paired image-to-image translation from MR to CT and outperformed all unpaired approaches. The 3D techniques provided anatomically correct segmentations, avoiding underprediction of small structures like the spinous process.
Large Language Models (LLMs) have been applied to build several automation and personalized question-answering prototypes so far. However, scaling such prototypes to robust products with minimized hallucinations or fake responses still remains an open challenge, especially in niche data-table heavy domains such as financial decision making. In this work, we present a novel Langchain-based framework that transforms data tables into hierarchical textual data chunks to enable a wide variety of actionable question answering. First, the user-queries are classified by intention followed by automated retrieval of the most relevant data chunks to generate customized LLM prompts per query. Next, the custom prompts and their responses undergo multi-metric scoring to assess for hallucinations and response confidence. The proposed system is optimized with user-query intention classification, advanced prompting, data scaling capabilities and it achieves over 90% confidence scores for a variety of user-queries responses ranging from {What, Where, Why, How, predict, trend, anomalies, exceptions} that are crucial for financial decision making applications. The proposed data to answers framework can be extended to other analytical domains such as sales and payroll to ensure optimal hallucination control guardrails.
Motivation: Biomedical named entity recognition (BioNER) is the most fundamental task in biomedical text mining. State-of-the-art BioNER systems often require handcrafted features specifically designed for each type of biomedical entities. This feature generation process requires intensive labors from biomedical and linguistic experts, and makes it difficult to adapt these systems to new biomedical entity types. Although recent studies explored using neural network models for BioNER to free experts from manual feature generation, these models still require substantial human efforts to annotate massive training data. Results: We propose a multi-task learning framework for BioNER that is based on neural network models to save human efforts. We build a global model by collectively training multiple models that share parameters, each model capturing the characteristics of a different biomedical entity type. In experiments on five BioNER benchmark datasets covering four major biomedical entity types, our model outperforms state-of-the-art systems and other neural network models by a large margin, even when only limited training data are available. Further analysis shows that the large performance gains come from sharing character- and word-level information between different biomedical entities. The approach creates new opportunities for text-mining approaches to help biomedical scientists better exploit knowledge in biomedical literature.