亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A significant limitation of the LTE-V2X and NR-V2X sidelink scheduling mechanisms is their difficulty coping with variations in inter packet arrival times, also known as aperiodic packets. This conflicts with the fundamental characteristics of most V2X services which are triggered based on an event. e.g. ETSI Cooperative Awareness Messages (CAMs) - vehicle kinematics, Cooperative Perception Messages (CPMs) - object sensing and Decentralised Event Notification Messages (DENMs) - event occurrences. Furthermore, network management techniques such as congestion control mechanisms can result in varied inter packet arrival times. To combat this, NR-V2X introduced a dynamic grant mechanism, which we show is ineffective unless there is background periodic traffic to stabilise the sensing history upon which the scheduler makes it decisions. The characteristics of V2X services make it implausible that such periodic application traffic will exist. To overcome this significant drawback, we demonstrate that the standardised scheduling algorithms can be made effective if the event triggered arrival rate of packets can be accurately predicted. These predictions can be used to tune the Resource Reservation Interval (RRI) parameter of the MAC scheduler to negate the negative impact of aperiodicity. Such an approach allows the scheduler to achieve comparable performance to a scenario where packets arrive periodically. To demonstrate the effectiveness of our approach, an ML model has been devised for the prediction of cooperative awareness messages, but the same principle can be abstracted to other V2X service types.

相關內容

The distribution for the minimum of Brownian motion or the Cauchy process is well-known using the reflection principle. Here we consider the problem of finding the sample-by-sample minimum, which we call the online minimum search. We consider the possibility of the golden search method, but we show quantitatively that the bisection method is more efficient. In the bisection method there is a hierarchical parameter, which tunes the depth to which each sub-search is conducted, somewhat similarly to how a depth-first search works to generate a topological ordering on nodes. Finally, we consider the possibility of using harmonic measure, which is a novel idea that has so far been unexplored.

Spatial areal models encounter the well-known and challenging problem of spatial confounding. This issue makes it arduous to distinguish between the impacts of observed covariates and spatial random effects. Despite previous research and various proposed methods to tackle this problem, finding a definitive solution remains elusive. In this paper, we propose a simplified version of the spatial+ approach that involves dividing the covariate into two components. One component captures large-scale spatial dependence, while the other accounts for short-scale dependence. This approach eliminates the need to separately fit spatial models for the covariates. We apply this method to analyse two forms of crimes against women, namely rapes and dowry deaths, in Uttar Pradesh, India, exploring their relationship with socio-demographic covariates. To evaluate the performance of the new approach, we conduct extensive simulation studies under different spatial confounding scenarios. The results demonstrate that the proposed method provides reliable estimates of fixed effects and posterior correlations between different responses.

Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.

The present work is devoted to strong approximations of a generalized Ait-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size h>0. A mean-square convergence rate of order 0.5 is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. To the best of our knowledge, this is the first paper to propose an unconditionally positivity preserving explicit scheme with order 1/2 of mean-square convergence for the model. Numerical experiments are finally provided to confirm the theoretical findings.

Gradient-enhanced Kriging (GE-Kriging) is a well-established surrogate modelling technique for approximating expensive computational models. However, it tends to get impractical for high-dimensional problems due to the size of the inherent correlation matrix and the associated high-dimensional hyper-parameter tuning problem. To address these issues, a new method, called sliced GE-Kriging (SGE-Kriging), is developed in this paper for reducing both the size of the correlation matrix and the number of hyper-parameters. We first split the training sample set into multiple slices, and invoke Bayes' theorem to approximate the full likelihood function via a sliced likelihood function, in which multiple small correlation matrices are utilized to describe the correlation of the sample set rather than one large one. Then, we replace the original high-dimensional hyper-parameter tuning problem with a low-dimensional counterpart by learning the relationship between the hyper-parameters and the derivative-based global sensitivity indices. The performance of SGE-Kriging is finally validated by means of numerical experiments with several benchmarks and a high-dimensional aerodynamic modeling problem. The results show that the SGE-Kriging model features an accuracy and robustness that is comparable to the standard one but comes at much less training costs. The benefits are most evident for high-dimensional problems with tens of variables.

We propose a finite difference scheme for the numerical solution of a two-dimensional singularly perturbed convection-diffusion partial differential equation whose solution features interacting boundary and interior layers, the latter due to discontinuities in source term. The problem is posed on the unit square. The second derivative is multiplied by a singular perturbation parameter, $\epsilon$, while the nature of the first derivative term is such that flow is aligned with a boundary. These two facts mean that solutions tend to exhibit layers of both exponential and characteristic type. We solve the problem using a finite difference method, specially adapted to the discontinuities, and applied on a piecewise-uniform (Shishkin). We prove that that the computed solution converges to the true one at a rate that is independent of the perturbation parameter, and is nearly first-order. We present numerical results that verify that these results are sharp.

The so-called independent low-rank matrix analysis (ILRMA) has demonstrated a great potential for dealing with the problem of determined blind source separation (BSS) for audio and speech signals. This method assumes that the spectra from different frequency bands are independent and the spectral coefficients in any frequency band are Gaussian distributed. The Itakura-Saito divergence is then employed to estimate the source model related parameters. In reality, however, the spectral coefficients from different frequency bands may be dependent, which is not considered in the existing ILRMA algorithm. This paper presents an improved version of ILRMA, which considers the dependency between the spectral coefficients from different frequency bands. The Sinkhorn divergence is then exploited to optimize the source model parameters. As a result of using the cross-band information, the BSS performance is improved. But the number of parameters to be estimated also increases significantly, and so is the computational complexity. To reduce the algorithm complexity, we apply the Kronecker product to decompose the modeling matrix into the product of a number of matrices of much smaller dimensionality. An efficient algorithm is then developed to implement the Sinkhorn divergence based BSS algorithm and the complexity is reduced by an order of magnitude.

The Erd\H{o}s, Gr\"unwald and Weiszfeld theorem provides a characterization of infinite graphs which are Eulerian. That is, infinite graphs which admit infinite Eulerian trails. In this article we complement this theorem with a characterization of those finite trails that can be extended to infinite Eulerian trails. This allows us to prove an effective version of the Erd\H{o}s, Gr\"unwald and Weiszfeld theorem for a class of graphs that includes non locally finite ones, generalizing a theorem of D.Bean.

We consider wave scattering from a system of highly contrasting resonators with time-modulated material parameters. In this setting, the wave equation reduces to a system of coupled Helmholtz equations that models the scattering problem. We consider the one-dimensional setting. In order to understand the energy of the system, we prove a novel higher-order discrete, capacitance matrix approximation of the subwavelength resonant quasifrequencies. Further, we perform numerical experiments to support and illustrate our analytical results and show how periodically time-dependent material parameters affect the scattered wave field.

A new variant of Newton's method - named Backtracking New Q-Newton's method (BNQN) - which has strong theoretical guarantee, is easy to implement, and has good experimental performance, was recently introduced by the third author. Experiments performed previously showed some remarkable properties of the basins of attractions for finding roots of polynomials and meromorphic functions, with BNQN. In general, they look more smooth than that of Newton's method. In this paper, we continue to experimentally explore in depth this remarkable phenomenon, and connect BNQN to Newton's flow and Voronoi's diagram. This link poses a couple of challenging puzzles to be explained. Experiments also indicate that BNQN is more robust against random perturbations than Newton's method and Random Relaxed Newton's method.

北京阿比特科技有限公司