亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on $n$ vertices and $m$ edges. In the first (edge-independent) model, a random hypergraph $H_1$ is constructed by fixing a parameter $p$ and allowing each of the $n$ vertices to join each of the $m$ edges independently with probability $p$. In the parameter range in which $pn \rightarrow \infty$ and $pm \rightarrow \infty$, we show that with high probability (w.h.p.) $H_1$ has discrepancy at least $\Omega(2^{-n/m} \sqrt{pn})$ when $m = O(n)$, and at least $\Omega(\sqrt{pn \log\gamma })$ when $m \gg n$, where $\gamma = \min\{ m/n, pn\}$. In the second (edge-dependent) model, $d$ is fixed and each vertex of $H_2$ independently joins exactly $d$ edges uniformly at random. We obtain analogous results for this model by generalizing the techniques used for the edge-independent model with $p=d/m$. Namely, for $d \rightarrow \infty$ and $dn/m \rightarrow \infty$, we prove that w.h.p. $H_{2}$ has discrepancy at least $\Omega(2^{-n/m} \sqrt{dn/m})$ when $m = O(n)$, and at least $\Omega(\sqrt{(dn/m) \log\gamma})$ when $m \gg n$, where $\gamma =\min\{m/n, dn/m\}$. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy in both models (when $p=d/m$), in the dense regime of $m \gg n$. Specifically, we apply the partial colouring lemma of Lovett and Meka to show that w.h.p. $H_{1}$ and $H_{2}$ each have discrepancy $O( \sqrt{dn/m} \log(m/n))$, provided $d \rightarrow \infty$, $d n/m \rightarrow \infty$ and $m \gg n$. This result is algorithmic, and together with the work of Bansal and Meka characterizes how the discrepancy of each random hypergraph model transitions from $\Theta(\sqrt{d})$ to $o(\sqrt{d})$ as $m$ varies from $m=\Theta(n)$ to $m \gg n$.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 情景 · ONCE · 無向圖 · 無向 ·
2021 年 12 月 21 日

Let $G=(V(G),E(G))$ be a finite simple undirected graph with vertex set $V(G)$, edge set $E(G)$ and vertex subset $S\subseteq V(G)$. $S$ is termed \emph{open-dominating} if every vertex of $G$ has at least one neighbor in $S$, and \emph{open-independent, open-locating-dominating} (an $OLD_{oind}$-set for short) if no two vertices in $G$ have the same set of neighbors in $S$, and each vertex in $S$ is open-dominated exactly once by $S$. The problem of deciding whether or not $G$ has an $OLD_{oind}$-set has important applications that have been reported elsewhere. As the problem is known to be $\mathcal{NP}$-complete, it appears to be notoriously difficult as we show that its complexity remains the same even for just planar bipartite graphs and also for planar subcubic graphs. Also, we present characterizations of both $P_4$-tidy graphs and the complementary prisms of cographs that have an $OLD_{oind}$-set.

We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a $k$-uniform hypergraph $H$ with $n$ vertices and $m$ hyperedges. A $k$-simplex in $H$ is a subhypergraph on $k+1$ vertices $X$ such that all $k+1$ possible hyperedges among $X$ exist in $H$. The goal is to process a stream of hyperedges of $H$ and compute a good estimate of $T_k(H)$, the number of $k$-simplices in $H$. We design a suite of algorithms for this problem. Under a promise that $T_k(H) \ge T$, our algorithms use at most four passes and together imply a space bound of $O( \epsilon^{-2} \log\delta^{-1} \text{polylog} n \cdot \min\{ m^{1+1/k}/T, m/T^{2/(k+1)} \} )$ for each fixed $k \ge 3$, in order to guarantee an estimate within $(1\pm\epsilon)T_k(H)$ with probability at least $1-\delta$. We also give a simpler $1$-pass algorithm that achieves $O(\epsilon^{-2} \log\delta^{-1} \log n\cdot (m/T) ( \Delta_E + \Delta_V^{1-1/k} ))$ space, where $\Delta_E$ (respectively, $\Delta_V$) denotes the maximum number of $k$-simplices that share a hyperedge (respectively, a vertex). We complement these algorithmic results with space lower bounds of the form $\Omega(\epsilon^{-2})$, $\Omega(m^{1+1/k}/T)$, $\Omega(m/T^{1-1/k})$ and $\Omega(m\Delta_V^{1/k}/T)$ for multi-pass algorithms and $\Omega(m\Delta_E/T)$ for $1$-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.

An oblivious subspace embedding (OSE), characterized by parameters $m,n,d,\epsilon,\delta$, is a random matrix $\Pi\in \mathbb{R}^{m\times n}$ such that for any $d$-dimensional subspace $T\subseteq \mathbb{R}^n$, $\Pr_\Pi[\forall x\in T, (1-\epsilon)\|x\|_2 \leq \|\Pi x\|_2\leq (1+\epsilon)\|x\|_2] \geq 1-\delta$. For $\epsilon$ and $\delta$ at most a small constant, we show that any OSE with one nonzero entry in each column must satisfy that $m = \Omega(d^2/(\epsilon^2\delta))$, establishing the optimality of the classical Count-Sketch matrix. When an OSE has $1/(9\epsilon)$ nonzero entries in each column, we show it must hold that $m = \Omega(\epsilon^{O(\delta)} d^2)$, improving on the previous $\Omega(\epsilon^2 d^2)$ lower bound due to Nelson and Nguyen (ICALP 2014).

This paper proposes a regularization of the Monge-Amp\`ere equation in planar convex domains through uniformly elliptic Hamilton-Jacobi-Bellman equations. The regularized problem possesses a unique strong solution $u_\varepsilon$ and is accessible to the discretization with finite elements. This work establishes locally uniform convergence of $u_\varepsilon$ to the convex Alexandrov solution $u$ to the Monge-Amp\`ere equation as the regularization parameter $\varepsilon$ approaches $0$. A mixed finite element method for the approximation of $u_\varepsilon$ is proposed, and the regularized finite element scheme is shown to be locally uniformly convergent. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions $u$.

Erd\H{o}s and Purdy, and later Agarwal and Sharir, conjectured that any set of $n$ points in $\mathbb R^{d}$ determine at most $Cn^{d/2}$ congruent $k$-simplices for even $d$. We obtain the first significant progress towards this conjecture, showing that this number is at most $C n^{3d/4}$ for $k<d$. As a consequence, we obtain an upper bound of $C n^{3d/4+2}$ for the number of similar $k$-simplices determined by $n$ points in $\mathbb R^d$, which improves the results of Agarwal, Apfelbaum, Purdy and Sharir. This problem is motivated by the problem of exact pattern matching. We also address Zarankiewicz-type questions of finding the maximum number of edges in semi-algebraic graphs with no $K_{u,u}$. Here, we improve the previous result of Fox, Pach, Sheffer, Suk, and Zahl, and Do for $d\le 4$, as well as for any $d$ and moderately large $u$. We get an improvement of their results for any $d$ and $u$ for unit-distance graphs, which was one of the main applications of their results. From a more general prospective, our results are proved using classical cutting techniques. In the recent years, we saw a great development of the polynomial partitioning method in incidence geometry that followed the breakthrough result by Guth and Katz. One consequence of that development is that the attention of the researchers in incidence geometry swayed in polynomial techniques. In this paper, we argue that there is a number of open problems where classical techniques work better.

Discrepancy measures between probability distributions, often termed statistical distances, are ubiquitous in probability theory, statistics and machine learning. To combat the curse of dimensionality when estimating these distances from data, recent work has proposed smoothing out local irregularities in the measured distributions via convolution with a Gaussian kernel. Motivated by the scalability of this framework to high dimensions, we investigate the structural and statistical behavior of the Gaussian-smoothed $p$-Wasserstein distance $\mathsf{W}_p^{(\sigma)}$, for arbitrary $p\geq 1$. After establishing basic metric and topological properties of $\mathsf{W}_p^{(\sigma)}$, we explore the asymptotic statistical behavior of $\mathsf{W}_p^{(\sigma)}(\hat{\mu}_n,\mu)$, where $\hat{\mu}_n$ is the empirical distribution of $n$ independent observations from $\mu$. We prove that $\mathsf{W}_p^{(\sigma)}$ enjoys a parametric empirical convergence rate of $n^{-1/2}$, which contrasts the $n^{-1/d}$ rate for unsmoothed $\mathsf{W}_p$ when $d \geq 3$. Our proof relies on controlling $\mathsf{W}_p^{(\sigma)}$ by a $p$th-order smooth Sobolev distance $\mathsf{d}_p^{(\sigma)}$ and deriving the limit distribution of $\sqrt{n}\,\mathsf{d}_p^{(\sigma)}(\hat{\mu}_n,\mu)$, for all dimensions $d$. As applications, we provide asymptotic guarantees for two-sample testing and minimum distance estimation using $\mathsf{W}_p^{(\sigma)}$, with experiments for $p=2$ using a maximum mean discrepancy formulation of $\mathsf{d}_2^{(\sigma)}$.

We study a family of reachability problems under waiting-time restrictions in temporal and vertex-colored temporal graphs. Given a temporal graph and a set of source vertices, we find the set of vertices that are reachable from a source via a time-respecting path, where the difference in timestamps between consecutive edges is at most a resting time. Given a vertex-colored temporal graph and a multiset query of colors, we find the set of vertices reachable from a source via a time-respecting path such that the vertex colors of the path agree with the multiset query and the difference in timestamps between consecutive edges is at most a resting time. These kind of problems have several applications in understanding the spread of a disease in a network, tracing contacts in epidemic outbreaks, finding signaling pathways in the brain network, and recommending tours for tourists. We present an algebraic algorithmic framework based on constrained multilinear sieving for solving the restless reachability problems we propose. In particular, parameterized by the length of a path $k$ sought, we show the problems can be solved in $O(2^k k m \Delta)$ time and $O(n \tau)$ space, where $n$ is the number of vertices, $m$ the number of edges, $\Delta$ the maximum resting time and $\tau$ the maximum timestamp of an input temporal graph. In addition, we prove that the algorithms presented for the restless reachability problems in vertex-colored temporal graphs are optimal under plausible complexity-theoretic assumptions. Finally, with an open-source implementation, we demonstrate that our algorithm scales to large graphs with up to one billion temporal edges, despite the problems being NP-hard. Specifically, we present extensive experiments to evaluate our scalability claims both on synthetic and real-world graphs.

We propose a new splitting method for strong numerical solution of the Cox-Ingersoll-Ross model. For this method, applied over both deterministic and adaptive random meshes, we prove a uniform moment bound and strong error results of order $1/4$ in $L_1$ and $L_2$ for the parameter regime $\kappa\theta>\sigma^2$. Our scheme does not fall into the class analyzed in Hefter & Herzwurm (2018) where convergence of maximum order $1/4$ of a novel class of Milstein-based methods over the full range of parameter values is shown. Hence we present a separate convergence analysis before we extend the new method to cover all parameter values by introducing a 'soft zero' region (where the deterministic flow determines the approximation) giving a hybrid type method to deal with the reflecting boundary. From numerical simulations we observe a rate of order $1$ when $\kappa\theta>\sigma^2$ rather than $1/4$. Asymptotically, for large noise, we observe that the rates of convergence decrease similarly to those of other schemes but that the proposed method displays smaller error constants. Our results also serve as supporting numerical evidence that the conjecture of Hefter & Jentzen (2019) holds true for methods with non-uniform Wiener increments.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司