亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tie-breaker designs trade off a statistical design objective with short-term gain from preferentially assigning a binary treatment to those with high values of a running variable $x$. The design objective is any continuous function of the expected information matrix in a two-line regression model, and short-term gain is expressed as the covariance between the running variable and the treatment indicator. We investigate how to specify design functions indicating treatment probabilities as a function of $x$ to optimize these competing objectives, under external constraints on the number of subjects receiving treatment. Our results include sharp existence and uniqueness guarantees, while accommodating the ethically appealing requirement that treatment probabilities are non-decreasing in $x$. Under such a constraint, there always exists an optimal design function that is constant below and above a single discontinuity. When the running variable distribution is not symmetric or the fraction of subjects receiving the treatment is not $1/2$, our optimal designs improve upon a $D$-optimality objective without sacrificing short-term gain, compared to the three level tie-breaker designs of Owen and Varian (2020) that fix treatment probabilities at $0$, $1/2$, and $1$. We illustrate our optimal designs with data from Head Start, an early childhood government intervention program.

相關內容

In this paper, we study the almost sure boundedness and the convergence of the stochastic approximation (SA) algorithm. At present, most available convergence proofs are based on the ODE method, and the almost sure boundedness of the iterations is an assumption and not a conclusion. In Borkar-Meyn (2000), it is shown that if the ODE has only one globally attractive equilibrium, then under additional assumptions, the iterations are bounded almost surely, and the SA algorithm converges to the desired solution. Our objective in the present paper is to provide an alternate proof of the above, based on martingale methods, which are simpler and less technical than those based on the ODE method. As a prelude, we prove a new sufficient condition for the global asymptotic stability of an ODE. Next we prove a ``converse'' Lyapunov theorem on the existence of a suitable Lyapunov function with a globally bounded Hessian, for a globally exponentially stable system. Both theorems are of independent interest to researchers in stability theory. Then, using these results, we provide sufficient conditions for the almost sure boundedness and the convergence of the SA algorithm. We show through examples that our theory covers some situations that are not covered by currently known results, specifically Borkar-Meyn (2000).

A general optimization framework is proposed for simultaneously transmitting and reflecting reconfigurable surfaces (STAR-RISs) with coupled phase shifts, which converges to the Karush-Kuhn-Tucker (KKT) optimal solution under some mild conditions. More particularly, the amplitude and phase-shift coefficients of STAR-RISs are optimized alternatively in closed form. To demonstrate the effectiveness of the proposed optimization framework, the throughput maximization problem is considered in a case study. It is rigorously proved that the KKT optimal solution is obtained. Numerical results confirm the effectiveness of the proposed optimization framework compared to baseline schemes.

Deep transfer learning has been widely used for knowledge transmission in recent years. The standard approach of pre-training and subsequently fine-tuning, or linear probing, has shown itself to be effective in many down-stream tasks. Therefore, a challenging and ongoing question arises: how to quantify cross-task transferability that is compatible with transferred results while keeping self-consistency? Existing transferability metrics are estimated on the particular model by conversing source and target tasks. They must be recalculated with all existing source tasks whenever a novel unknown target task is encountered, which is extremely computationally expensive. In this work, we highlight what properties should be satisfied and evaluate existing metrics in light of these characteristics. Building upon this, we propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks. Specifically, we use a restart scheme to calculate every batch gradient over each weight unit more than once, and then we take the average of all the gradients to get the expectation. Thus, the transferability between the source and target task is estimated by computing the distance of normalized principal gradients. Extensive experiments show that the proposed transferability metric is more stable, reliable and efficient than SOTA methods.

Learning hierarchical structures in sequential data -- from simple algorithmic patterns to natural language -- in a reliable, generalizable way remains a challenging problem for neural language models. Past work has shown that recurrent neural networks (RNNs) struggle to generalize on held-out algorithmic or syntactic patterns without supervision or some inductive bias. To remedy this, many papers have explored augmenting RNNs with various differentiable stacks, by analogy with finite automata and pushdown automata (PDAs). In this paper, we improve the performance of our recently proposed Nondeterministic Stack RNN (NS-RNN), which uses a differentiable data structure that simulates a nondeterministic PDA, with two important changes. First, the model now assigns unnormalized positive weights instead of probabilities to stack actions, and we provide an analysis of why this improves training. Second, the model can directly observe the state of the underlying PDA. Our model achieves lower cross-entropy than all previous stack RNNs on five context-free language modeling tasks (within 0.05 nats of the information-theoretic lower bound), including a task on which the NS-RNN previously failed to outperform a deterministic stack RNN baseline. Finally, we propose a restricted version of the NS-RNN that incrementally processes infinitely long sequences, and we present language modeling results on the Penn Treebank.

In past work on fairness in machine learning, the focus has been on forcing the prediction of classifiers to have similar statistical properties for people of different demographics. To reduce the violation of these properties, fairness methods usually simply rescale the classifier scores, ignoring similarities and dissimilarities between members of different groups. Yet, we hypothesize that such information is relevant in quantifying the unfairness of a given classifier. To validate this hypothesis, we introduce Optimal Transport to Fairness (OTF), a method that quantifies the violation of fairness constraints as the smallest Optimal Transport cost between a probabilistic classifier and any score function that satisfies these constraints. For a flexible class of linear fairness constraints, we construct a practical way to compute OTF as a differentiable fairness regularizer that can be added to any standard classification setting. Experiments show that OTF can be used to achieve an improved trade-off between predictive power and fairness.

This note complements the upcoming paper "One-Way Ticket to Las Vegas and the Quantum Adversary" by Belovs and Yolcu, to be presented at QIP 2023. I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional filtered $\gamma _{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.

Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects such as time series, networks and images. Notably not every divergence provides identical results when applied to the same problem. Therefore it is convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work we attack both problems, that is, the choice of a family of divergences and the way to do the map into a symbolic sequence. For advancing in the first task we work with the family of divergences known as the Burbea-Rao centroids (BRC) and for the second one we proceed by mapping the original object into a symbolic sequence through the use of ordinal patterns. Finally we apply our proposals to analyse simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen Shannon divergence, besides the fact that it verifies some interesting formal properties.

We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.

Bayesian adaptive experimental design is a form of active learning, which chooses samples to maximize the information they give about uncertain parameters. Prior work has shown that other forms of active learning can suffer from active learning bias, where unrepresentative sampling leads to inconsistent parameter estimates. We show that active learning bias can also afflict Bayesian adaptive experimental design, depending on model misspecification. We analyze the case of estimating a linear model, and show that worse misspecification implies more severe active learning bias. At the same time, model classes incorporating more "noise" - i.e., specifying higher inherent variance in observations - suffer less from active learning bias. Finally, we demonstrate empirically that insights from the linear model can predict the presence and degree of active learning bias in nonlinear contexts, namely in a (simulated) preference learning experiment.

Mobility systems often suffer from a high price of anarchy due to the uncontrolled behavior of selfish users. This may result in societal costs that are significantly higher compared to what could be achieved by a centralized system-optimal controller. Monetary tolling schemes can effectively align the behavior of selfish users with the system-optimum. Yet, they inevitably discriminate the population in terms of income. Artificial currencies were recently presented as an effective alternative that can achieve the same performance, whilst guaranteeing fairness among the population. However, those studies were based on behavioral models that may differ from practical implementations. This paper presents a data-driven approach to automatically adapt artificial-currency tolls within repetitive-game settings. We first consider a parallel-arc setting whereby users commute on a daily basis from a unique origin to a unique destination, choosing a route in exchange of an artificial-currency price or reward while accounting for the impact of the choices of the other users on travel discomfort. Second, we devise a model-based reinforcement learning controller that autonomously learns the optimal pricing policy by interacting with the proposed framework considering the closeness of the observed aggregate flows to a desired system-optimal distribution as a reward function. Our numerical results show that the proposed data-driven pricing scheme can effectively align the users' flows with the system optimum, significantly reducing the societal costs with respect to the uncontrolled flows (by about 15% and 25% depending on the scenario), and respond to environmental changes in a robust and efficient manner.

北京阿比特科技有限公司