亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish the first nonasymptotic error bounds for Kaplan-Meier-based nearest neighbor and kernel survival probability estimators where feature vectors reside in metric spaces. Our bounds imply rates of strong consistency for these nonparametric estimators and, up to a log factor, match an existing lower bound for conditional CDF estimation. Our proof strategy also yields nonasymptotic guarantees for nearest neighbor and kernel variants of the Nelson-Aalen cumulative hazards estimator. We experimentally compare these methods on four datasets. We find that for the kernel survival estimator, a good choice of kernel is one learned using random survival forests.

相關內容

This paper considers a convex composite optimization problem with affine constraints, which includes problems that take the form of minimizing a smooth convex objective function over the intersection of (simple) convex sets, or regularized with multiple (simple) functions. Motivated by high-dimensional applications in which exact projection/proximal computations are not tractable, we propose a \textit{projection-free} augmented Lagrangian-based method, in which primal updates are carried out using a \textit{weak proximal oracle} (WPO). In an earlier work, WPO was shown to be more powerful than the standard \textit{linear minimization oracle} (LMO) that underlies conditional gradient-based methods (aka Frank-Wolfe methods). Moreover, WPO is computationally tractable for many high-dimensional problems of interest, including those motivated by recovery of low-rank matrices and tensors, and optimization over polytopes which admit efficient LMOs. The main result of this paper shows that under a certain curvature assumption (which is weaker than strong convexity), our WPO-based algorithm achieves an ergodic rate of convergence of $O(1/T)$ for both the objective residual and feasibility gap. This result, to the best of our knowledge, improves upon the $O(1/\sqrt{T})$ rate for existing LMO-based projection-free methods for this class of problems. Empirical experiments on a low-rank and sparse covariance matrix estimation task and the Max Cut semidefinite relaxation demonstrate the superiority of our method over state-of-the-art LMO-based Lagrangian-based methods.

We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon,0)$-differential privacy.

We study the problem of covering and learning sums $X = X_1 + \cdots + X_n$ of independent integer-valued random variables $X_i$ (SIIRVs) with unbounded, or even infinite, support. De et al. at FOCS 2018, showed that the maximum value of the collective support of $X_i$'s necessarily appears in the sample complexity of learning $X$. In this work, we address two questions: (i) Are there general families of SIIRVs with unbounded support that can be learned with sample complexity independent of both $n$ and the maximal element of the support? (ii) Are there general families of SIIRVs with unbounded support that admit proper sparse covers in total variation distance? As for question (i), we provide a set of simple conditions that allow the unbounded SIIRV to be learned with complexity $\text{poly}(1/\epsilon)$ bypassing the aforementioned lower bound. We further address question (ii) in the general setting where each variable $X_i$ has unimodal probability mass function and is a different member of some, possibly multi-parameter, exponential family $\mathcal{E}$ that satisfies some structural properties. These properties allow $\mathcal{E}$ to contain heavy tailed and non log-concave distributions. Moreover, we show that for every $\epsilon > 0$, and every $k$-parameter family $\mathcal{E}$ that satisfies some structural assumptions, there exists an algorithm with $\tilde{O}(k) \cdot \text{poly}(1/\epsilon)$ samples that learns a sum of $n$ arbitrary members of $\mathcal{E}$ within $\epsilon$ in TV distance. The output of the learning algorithm is also a sum of random variables whose distribution lies in the family $\mathcal{E}$. En route, we prove that any discrete unimodal exponential family with bounded constant-degree central moments can be approximated by the family corresponding to a bounded subset of the initial (unbounded) parameter space.

In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks that need careful consideration. Typically, model selection and evaluation are strictly separated endeavors, splitting the sample at hand into a training, validation, and evaluation set, and only compute a single confidence interval for the prediction performance of the final selected model. We however propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set by interpreting the selection problem as a simultaneous inference problem. We use bootstrap tilting and a maxT-type multiplicity correction. The approach is universally applicable for any combination of prediction models, any model selection strategy, and any prediction performance measure that accepts weights. We conducted various simulation experiments which show that our proposed approach yields lower confidence bounds that are at least comparably good as bounds from standard approaches, and that reliably reach the nominal coverage probability. In addition, especially when sample size is small, our proposed approach yields better performing prediction models than the default selection of only one model for evaluation does.

In some inferential statistical methods, such as tests and confidence intervals, it is important to describe the stochastic behavior of statistical functionals, aside from their large sample properties. We study such behavior in terms of the usual stochastic order. For this purpose, we introduce a generalized family of stochastic orders, which is referred to as transform orders, showing that it provides a flexible framework for deriving stochastic monotonicity results. Given that our general definition makes it possible to obtain some well-known ordering relations as particular cases, we can easily apply our method to different families of functionals. These include some prominent inequality measures, such as the generalized entropy, the Gini index, and its generalizations. We also illustrate the applicability of our approach by determining the least favorable distribution, and the behavior of some bootstrap statistics, in some goodness-of-fit testing procedures.

This paper presents a computationally feasible method to compute rigorous bounds on the interval-generalisation of regression analysis to account for epistemic uncertainty in the output variables. The new iterative method uses machine learning algorithms to fit an imprecise regression model to data that consist of intervals rather than point values. The method is based on a single-layer interval neural network which can be trained to produce an interval prediction. It seeks parameters for the optimal model that minimizes the mean squared error between the actual and predicted interval values of the dependent variable using a first-order gradient-based optimization and interval analysis computations to model the measurement imprecision of the data. An additional extension to a multi-layer neural network is also presented. We consider the explanatory variables to be precise point values, but the measured dependent values are characterized by interval bounds without any probabilistic information. The proposed iterative method estimates the lower and upper bounds of the expectation region, which is an envelope of all possible precise regression lines obtained by ordinary regression analysis based on any configuration of real-valued points from the respective y-intervals and their x-values.

Training even moderately-sized generative models with differentially-private stochastic gradient descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply too large. We advocate instead building off a good, relevant representation on an informative public dataset, then learning to model the private data with that representation. In particular, we minimize the maximum mean discrepancy (MMD) between private target data and a generator's distribution, using a kernel based on perceptual features learned from a public dataset. With the MMD, we can simply privatize the data-dependent term once and for all, rather than introducing noise at each step of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images with $\epsilon \approx 2$ which capture distinctive features in the distribution, far surpassing the current state of the art, which mostly focuses on datasets such as MNIST and FashionMNIST at a large $\epsilon \approx 10$. Our work introduces simple yet powerful foundations for reducing the gap between private and non-private deep generative models.

As it is known, universal codes, which estimate the entropy rate consistently, exist for any stationary ergodic source over a finite alphabet but not over a countably infinite one. We cast the problem of universal coding into the problem of universal densities with respect to a given reference measure on a countably generated measurable space, examples being the counting measure or the Lebesgue measure. We show that universal densities, which estimate the differential entropy rate consistently, exist if the reference measure is finite, which disproves that the assumption of a finite alphabet is necessary in general. To exhibit a universal density, we combine the prediction by partial matching (PPM) code with the non-parametric differential (NPD) entropy rate estimator, putting a prior both over all Markov orders and all quantization levels. The proof of universality applies Barron's asymptotic equipartition for densities and continuity of $f$-divergences for filtrations. As an application, we demonstrate that any universal density induces a strongly consistent Ces\`aro mean estimator of the conditional density given an infinite past, which solves the problem of universal prediction with the $0-1$ loss for a countable alphabet, by the way. We also show that there exists a strongly consistent entropy rate estimator with respect to the Lebesgue measure in the class of stationary ergodic Gaussian processes.

In randomized experiments and observational studies, weighting methods are often used to generalize and transport treatment effect estimates to a target population. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. However, these estimated multiplicative weights may not produce adequate covariate balance and can be highly variable, resulting in biased and unstable estimators, especially when there is limited covariate overlap across populations or treatment groups. To address these limitations, we propose a general weighting approach that weights each treatment group towards the target population in a single step. We present a framework and provide a justification for this one-step approach in terms of generic probability distributions. We show a formal connection between our method and inverse probability and inverse odds weighting. By construction, the proposed approach balances covariates and produces stable estimators. We show that our estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We demonstrate the performance of this approach using a simulation study and a randomized case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California.

We study the deviation inequality for a sum of high-dimensional random matrices and operators with dependence and arbitrary heavy tails. There is an increase in the importance of the problem of estimating high-dimensional matrices, and dependence and heavy-tail properties of data are among the most critical topics currently. In this paper, we derive a dimension-free upper bound on the deviation, that is, the bound does not depend explicitly on the dimension of matrices, but depends on their effective rank. Our result is a generalization of several existing studies on the deviation of the sum of matrices. Our proof is based on two techniques: (i) a variational approximation of the dual of moment generating functions, and (ii) robustification through truncation of eigenvalues of matrices. We show that our results are applicable to several problems such as covariance matrix estimation, hidden Markov models, and overparameterized linear regression models.

北京阿比特科技有限公司