We consider discrete best approximation problems formulated and solved in the framework of tropical algebra that deals with semirings and semifields with idempotent addition. Given a set of samples each consisting of input and output of an unknown function defined on an idempotent semifield, the problems are to find a best approximation of the function by tropical Puiseux polynomial and rational functions. A new solution approach is proposed which involves the reduction of the problem of polynomial approximation to best approximate solution of a tropical linear vector equation with an unknown vector on one side (a one-sided equation). We derive a best approximate solution to the one-sided equation end evaluate the inherent approximation error in a direct analytical form. Furthermore, we reduce the rational approximation problem to the best approximate solution of an equation with unknown vectors on both sides (a two-sided equation). A best approximate solution to the two-sided equation is obtained in numerical form by using an iterative alternating algorithm. To illustrate the technique developed, we solve example approximation problems in terms of a real semifield where addition is defined as maximum and multiplication as arithmetic addition (max-plus algebra), which correspond to the best Chebyshev approximation by piecewise linear functions.
Expecting intelligent machines to efficiently work in real world requires a new method to understand unstructured information in unknown environments with good accuracy, scalability and generalization, like human. Here, a memristive neural computing based perceptual signal differential processing and learning method for intelligent machines is presented, via extracting main features of environmental information and applying associated encoded stimuli to memristors, we successfully obtain human-like ability in processing unstructured environmental information, such as amplification (>720%) and adaptation (<50%) of mechanical stimuli. The method also exhibits good scalability and generalization, validated in two typical applications of intelligent machines: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping, through learning unknown object features (e.g., sharp corner and smooth surface) with a single memristor in 1 ms. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) are accurately (94%) extracted with a 40x25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms in electronic memristive neural circuits, the proposed method is adaptable to diverse sensing technologies, helping intelligent machines to generate smart high-level decisions in real world.
We consider the general class of time-homogeneous stochastic dynamical systems, both discrete and continuous, and study the problem of learning a representation of the state that faithfully captures its dynamics. This is instrumental to learn the transfer operator of the system, that in turn can be used for numerous tasks, such as forecasting and interpreting the system dynamics. We show that the search for a good representation can be cast as an optimization problem over neural networks. Our approach is supported by recent results in statistical learning theory, highlighting the role of approximation error and metric distortion in the context of transfer operator regression. The objective function we propose is associated with projection operators from the representation space to the data space, overcomes metric distortion, and can be empirically estimated from data. In the discrete time setting, we further derive a relaxed objective function that is differentiable and numerically well-conditioned. We compare our method against state-of-the-art approaches on different datasets, showing better performance across the board.
Problems from metric graph theory such as Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact on the field of parameterized complexity by being the first problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. More specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to hypergraph dualization, arguably one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in different works this last decade: for which vertex (or edge) set graph property $\Pi$ is the enumeration of minimal (or maximal) subsets satisfying $\Pi$ equivalent to hypergraph dualization? As only very few properties are known to fit within this context -- namely, properties related to minimal domination -- our results make significant progress in characterizing such properties, and provide new angles of approach for tackling hypergraph dualization. In a second step, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show these cases to be mainly tractable.
We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
We investigate the frequentist guarantees of the variational sparse Gaussian process regression model. In the theoretical analysis, we focus on the variational approach with spectral features as inducing variables. We derive guarantees and limitations for the frequentist coverage of the resulting variational credible sets. We also derive sufficient and necessary lower bounds for the number of inducing variables required to achieve minimax posterior contraction rates. The implications of these results are demonstrated for different choices of priors. In a numerical analysis we consider a wider range of inducing variable methods and observe similar phenomena beyond the scope of our theoretical findings.
We introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-dependent ``interactions'' without assuming a specific form for the underlying probability distribution. Predictions are obtained by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in one, two and three dimensions which demonstrate that the MPRS prediction performance (without parameter tuning) is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. In particular, MPRS is a particularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows superior computational efficiency and scalability for large samples. Massive data sets involving millions of nodes can be processed in a few seconds on a standard personal computer.
We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.
This chapter delves into the realm of computational complexity, exploring the world of challenging combinatorial problems and their ties with statistical physics. Our exploration starts by delving deep into the foundations of combinatorial challenges, emphasizing their nature. We will traverse the class P, which comprises problems solvable in polynomial time using deterministic algorithms, contrasting it with the class NP, where finding efficient solutions remains an enigmatic endeavor, understanding the intricacies of algorithmic transitions and thresholds demarcating the boundary between tractable and intractable problems. We will discuss the implications of the P versus NP problem, representing one of the profoundest unsolved enigmas of computer science and mathematics, bearing a tantalizing reward for its resolution. Drawing parallels between combinatorics and statistical physics, we will uncover intriguing interconnections that shed light on the nature of challenging problems. Statistical physics unveils profound analogies with complexities witnessed in combinatorial landscapes. Throughout this chapter, we will discuss the interplay between computational complexity theory and statistical physics. By unveiling the mysteries surrounding challenging problems, we aim to deepen understanding of the very essence of computation and its boundaries. Through this interdisciplinary approach, we aspire to illuminate the intricate tapestry of complexity underpinning the mathematical and physical facets of hard problems.
Deterministic planning assumes that the planning evolves along a fully predictable path, and therefore it loses the practical value in most real projections. A more realistic view is that planning ought to take into consideration partial observability beforehand and aim for a more flexible and robust solution. What is more significant, it is inevitable that the quality of plan varies dramatically in the partially observable environment. In this paper we propose a probabilistic contingent Hierarchical Task Network (HTN) planner, named High-Quality Contingent Planner (HQCP), to generate high-quality plans in the partially observable environment. The formalisms in HTN planning are extended into partial observability and are evaluated regarding the cost. Next, we explore a novel heuristic for high-quality plans and develop the integrated planning algorithm. Finally, an empirical study verifies the effectiveness and efficiency of the planner both in probabilistic contingent planning and for obtaining high-quality plans.