亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work introduces a novel approach for epistemic uncertainty estimation for ensemble models using pairwise-distance estimators (PaiDEs). These estimators utilize the pairwise-distance between model components to establish bounds on entropy and uses said bounds as estimates for information-based criterion. Unlike recent deep learning methods for epistemic uncertainty estimation, which rely on sample-based Monte Carlo estimators, PaiDEs are able to estimate epistemic uncertainty up to 100$\times$ faster, over a larger space (up to 100$\times$) and perform more accurately in higher dimensions. To validate our approach, we conducted a series of experiments commonly used to evaluate epistemic uncertainty estimation: 1D sinusoidal data, Pendulum-v0, Hopper-v2, Ant-v2 and Humanoid-v2. For each experimental setting, an Active Learning framework was applied to demonstrate the advantages of PaiDEs for epistemic uncertainty estimation.

相關內容

A second-order accurate and robust numerical scheme is developed for the Kapila model to simulate compressible multiphase flows. The scheme is formulated within the temporal-spatial coupling framework with the generalized Riemann problem (GRP) solver applied as the cornerstone. The use of the GRP solver enhances the capability of the resulting scheme to handle the stiffness of the Kapila model in two ways. Firstly, in addition to Riemann solutions, the time derivatives of flow variables at cell interfaces are obtained by the GRP solver. The coupled values, i.e. Riemann solutions and time derivatives, lead to a straightforward approximation to the velocity divergence at the next time level, enabling a semi-implicit time discretization to the volume fraction equation. Secondly, the use of time derivatives enables numerical fluxes to comprehensively account for the effect of the source term, which includes interactions between phases. The robustness of the resulting numerical scheme is therefore further improved. Several challenging numerical experiments are conducted to demonstrate the performance of the proposed finite volume scheme. In particular, a test case with a nonlinear smooth solution is designed to verify the numerical accuracy.

Video question answering (VideoQA) is an essential task in vision-language understanding, which has attracted numerous research attention recently. Nevertheless, existing works mostly achieve promising performances on short videos of duration within 15 seconds. For VideoQA on minute-level long-term videos, those methods are likely to fail because of lacking the ability to deal with noise and redundancy caused by scene changes and multiple actions in the video. Considering the fact that the question often remains concentrated in a short temporal range, we propose to first locate the question to a segment in the video and then infer the answer using the located segment only. Under this scheme, we propose "Locate before Answering" (LocAns), a novel approach that integrates a question locator and an answer predictor into an end-to-end model. During the training phase, the available answer label not only serves as the supervision signal of the answer predictor, but also is used to generate pseudo temporal labels for the question locator. Moreover, we design a decoupled alternative training strategy to update the two modules separately. In the experiments, LocAns achieves state-of-the-art performance on two modern long-term VideoQA datasets NExT-QA and ActivityNet-QA, and its qualitative examples show the reliable performance of the question localization.

The fusion of human-centric design and artificial intelligence (AI) capabilities has opened up new possibilities for next-generation autonomous vehicles that go beyond transportation. These vehicles can dynamically interact with passengers and adapt to their preferences. This paper proposes a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles. By utilizing LLMs' linguistic and contextual understanding abilities with specialized tools, we aim to integrate the language and reasoning capabilities of LLMs into autonomous vehicles. Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks, to explore LLMs' interpretation, interaction, and reasoning in various scenarios. We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands. Our empirical results highlight the substantial advantages of utilizing chain-of-thought prompting, leading to improved driving decisions, and showing the potential for LLMs to enhance personalized driving experiences through ongoing verbal feedback. The proposed framework aims to transform autonomous vehicle operations, offering personalized support, transparent decision-making, and continuous learning to enhance safety and effectiveness. We achieve user-centric, transparent, and adaptive autonomous driving ecosystems supported by the integration of LLMs into autonomous vehicles.

StepMix is an open-source Python package for the pseudo-likelihood estimation (one-, two- and three-step approaches) of generalized finite mixture models (latent profile and latent class analysis) with external variables (covariates and distal outcomes). In many applications in social sciences, the main objective is not only to cluster individuals into latent classes, but also to use these classes to develop more complex statistical models. These models generally divide into a measurement model that relates the latent classes to observed indicators, and a structural model that relates covariates and outcome variables to the latent classes. The measurement and structural models can be estimated jointly using the so-called one-step approach or sequentially using stepwise methods, which present significant advantages for practitioners regarding the interpretability of the estimated latent classes. In addition to the one-step approach, StepMix implements the most important stepwise estimation methods from the literature, including the bias-adjusted three-step methods with Bolk-Croon-Hagenaars and maximum likelihood corrections and the more recent two-step approach. These pseudo-likelihood estimators are presented in this paper under a unified framework as specific expectation-maximization subroutines. To facilitate and promote their adoption among the data science community, StepMix follows the object-oriented design of the scikit-learn library and provides an additional R wrapper.

Several deep learning algorithms have shown amazing performance for existing object detection tasks, but recognizing darker objects is the largest challenge. Moreover, those techniques struggled to detect or had a slow recognition rate, resulting in significant performance losses. As a result, an improved and accurate detection approach is required to address the above difficulty. The whole study proposes a combination of spiked and normal convolution layers as an energy-efficient and reliable object detector model. The proposed model is split into two sections. The first section is developed as a feature extractor, which utilizes pre-trained VGG16, and the second section of the proposal structure is the combination of spiked and normal Convolutional layers to detect the bounding boxes of images. We drew a pre-trained model for classifying detected objects. With state of the art Python libraries, spike layers can be trained efficiently. The proposed spike convolutional object detector (SCOD) has been evaluated on VOC and Ex-Dark datasets. SCOD reached 66.01% and 41.25% mAP for detecting 20 different objects in the VOC-12 and 12 objects in the Ex-Dark dataset. SCOD uses 14 Giga FLOPS for its forward path calculations. Experimental results indicated superior performance compared to Tiny YOLO, Spike YOLO, YOLO-LITE, Tinier YOLO and Center of loc+Xception based on mAP for the VOC dataset.

Many recent works in simulation-based inference (SBI) rely on deep generative models to approximate complex, high-dimensional posterior distributions. However, evaluating whether or not these approximations can be trusted remains a challenge. Most approaches evaluate the posterior estimator only in expectation over the observation space. This limits their interpretability and is not sufficient to identify for which observations the approximation can be trusted or should be improved. Building upon the well-known classifier two-sample test (C2ST), we introduce L-C2ST, a new method that allows for a local evaluation of the posterior estimator at any given observation. It offers theoretically grounded and easy to interpret -- e.g. graphical -- diagnostics, and unlike C2ST, does not require access to samples from the true posterior. In the case of normalizing flow-based posterior estimators, L-C2ST can be specialized to offer better statistical power, while being computationally more efficient. On standard SBI benchmarks, L-C2ST provides comparable results to C2ST and outperforms alternative local approaches such as coverage tests based on highest predictive density (HPD). We further highlight the importance of local evaluation and the benefit of interpretability of L-C2ST on a challenging application from computational neuroscience.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司