亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The deceleration of global poverty reduction in the last decades suggests that traditional redistribution policies are losing their effectiveness. Alternative ways to work towards the #1 United Nations Sustainable Development Goal (poverty eradication) are required. NGOs have insistingly denounced the criminalization of poverty, and the social science literature suggests that discrimination against the poor (a phenomenon known as aporophobia) could constitute a brake to the fight against poverty. This paper describes a proposal for an agent-based model to examine the impact that aporophobia at the institutional level has on poverty levels. This aporophobia agent-based model (AABM) will first be applied to a case study in the city of Barcelona. The regulatory environment is central to the model, since aporophobia has been identified in the legal framework. The AABM presented in this paper constitutes a cornerstone to obtain empirical evidence, in a non-invasive way, on the causal relationship between aporophobia and poverty levels. The simulations that will be generated based on the AABM have the potential to inform a new generation of poverty reduction policies, which act not only on the redistribution of wealth but also on the discrimination of the poor.

相關內容

Foundation models have made significant strides in 2D and language tasks such as image segmentation, object detection, and visual-language understanding. Nevertheless, their potential to enhance 3D scene representation learning remains largely untapped due to the domain gap. In this paper, we propose an innovative methodology Bridge3D to address this gap, pre-training 3D models using features, semantic masks, and captions sourced from foundation models. Specifically, our approach utilizes semantic masks from these models to guide the masking and reconstruction process in the masked autoencoder. This strategy enables the network to concentrate more on foreground objects, thereby enhancing 3D representation learning. Additionally, we bridge the 3D-text gap at the scene level by harnessing image captioning foundation models. To further facilitate knowledge distillation from well-learned 2D and text representations to the 3D model, we introduce a novel method that employs foundation models to generate highly accurate object-level masks and semantic text information at the object level. Our approach notably outshines state-of-the-art methods in 3D object detection and semantic segmentation tasks. For instance, on the ScanNet dataset, our method surpasses the previous state-of-the-art method, PiMAE, by a significant margin of 5.3%.

Autonomous agents are able to draw on a wide variety of potential sources of task knowledge; however current approaches invariably focus on only one or two. Here we investigate the challenges and impact of exploiting diverse knowledge sources to learn online, in one-shot, new tasks for a simulated office mobile robot. The resulting agent, developed in the Soar cognitive architecture, uses the following sources of domain and task knowledge: interaction with the environment, task execution and search knowledge, human natural language instruction, and responses retrieved from a large language model (GPT-3). We explore the distinct contributions of these knowledge sources and evaluate the performance of different combinations in terms of learning correct task knowledge and human workload. Results show that an agent's online integration of diverse knowledge sources improves one-shot task learning overall, reducing human feedback needed for rapid and reliable task learning.

We propose bounded fitting as a scheme for learning description logic concepts in the presence of ontologies. A main advantage is that the resulting learning algorithms come with theoretical guarantees regarding their generalization to unseen examples in the sense of PAC learning. We prove that, in contrast, several other natural learning algorithms fail to provide such guarantees. As a further contribution, we present the system SPELL which efficiently implements bounded fitting for the description logic $\mathcal{ELH}^r$ based on a SAT solver, and compare its performance to a state-of-the-art learner.

In multi-agent reinforcement learning (MARL), many popular methods, such as VDN and QMIX, are susceptible to a critical multi-agent pathology known as relative overgeneralization (RO), which arises when the optimal joint action's utility falls below that of a sub-optimal joint action in cooperative tasks. RO can cause the agents to get stuck into local optima or fail to solve cooperative tasks that require significant coordination between agents within a given timestep. Recent value-based MARL algorithms such as QPLEX and WQMIX can overcome RO to some extent. However, our experimental results show that they can still fail to solve cooperative tasks that exhibit strong RO. In this work, we propose a novel approach called curriculum learning for relative overgeneralization (CURO) to better overcome RO. To solve a target task that exhibits strong RO, in CURO, we first fine-tune the reward function of the target task to generate source tasks that are tailored to the current ability of the learning agent and train the agent on these source tasks first. Then, to effectively transfer the knowledge acquired in one task to the next, we use a transfer learning method that combines value function transfer with buffer transfer, which enables more efficient exploration in the target task. We demonstrate that, when applied to QMIX, CURO overcomes severe RO problem and significantly improves performance, yielding state-of-the-art results in a variety of cooperative multi-agent tasks, including the challenging StarCraft II micromanagement benchmarks.

Taxi-demand prediction is an important application of machine learning that enables taxi-providing facilities to optimize their operations and city planners to improve transportation infrastructure and services. However, the use of sensitive data in these systems raises concerns about privacy and security. In this paper, we propose the use of federated learning for taxi-demand prediction that allows multiple parties to train a machine learning model on their own data while keeping the data private and secure. This can enable organizations to build models on data they otherwise would not be able to access. Despite its potential benefits, federated learning for taxi-demand prediction poses several technical challenges, such as class imbalance, data scarcity among some parties, and the need to ensure model generalization to accommodate diverse facilities and geographic regions. To effectively address these challenges, we propose a system that utilizes region-independent encoding for geographic lat-long coordinates. By doing so, the proposed model is not limited to a specific region, enabling it to perform optimally in any area. Furthermore, we employ cost-sensitive learning and various regularization techniques to mitigate issues related to data scarcity and overfitting, respectively. Evaluation with real-world data collected from 16 taxi service providers in Japan over a period of six months showed the proposed system predicted demand level accurately within 1\% error compared to a single model trained with integrated data. The system also effectively defended against membership inference attacks on passenger data.

A number of information retrieval studies have been done to assess which statistical techniques are appropriate for comparing systems. However, these studies are focused on TREC-style experiments, which typically have fewer than 100 topics. There is no similar line of work for large search and recommendation experiments; such studies typically have thousands of topics or users and much sparser relevance judgements, so it is not clear if recommendations for analyzing traditional TREC experiments apply to these settings. In this paper, we empirically study the behavior of significance tests with large search and recommendation evaluation data. Our results show that the Wilcoxon and Sign tests show significantly higher Type-1 error rates for large sample sizes than the bootstrap, randomization and t-tests, which were more consistent with the expected error rate. While the statistical tests displayed differences in their power for smaller sample sizes, they showed no difference in their power for large sample sizes. We recommend the sign and Wilcoxon tests should not be used to analyze large scale evaluation results. Our result demonstrate that with Top-N recommendation and large search evaluation data, most tests would have a 100% chance of finding statistically significant results. Therefore, the effect size should be used to determine practical or scientific significance.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司