亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To bridge the gap between artists and non-specialists, we present a unified framework, Neural-Polyptych, to facilitate the creation of expansive, high-resolution paintings by seamlessly incorporating interactive hand-drawn sketches with fragments from original paintings. We have designed a multi-scale GAN-based architecture to decompose the generation process into two parts, each responsible for identifying global and local features. To enhance the fidelity of semantic details generated from users' sketched outlines, we introduce a Correspondence Attention module utilizing our Reference Bank strategy. This ensures the creation of high-quality, intricately detailed elements within the artwork. The final result is achieved by carefully blending these local elements while preserving coherent global consistency. Consequently, this methodology enables the production of digital paintings at megapixel scale, accommodating diverse artistic expressions and enabling users to recreate content in a controlled manner. We validate our approach to diverse genres of both Eastern and Western paintings. Applications such as large painting extension, texture shuffling, genre switching, mural art restoration, and recomposition can be successfully based on our framework.

相關內容

In order to unlock the potential of diverse sensors, we investigate a method to transfer knowledge between modalities using the structure of a unified multimodal representation space for Human Action Recognition (HAR). We formalize and explore an understudied cross-modal transfer setting we term Unsupervised Modality Adaptation (UMA), where the modality used in testing is not used in supervised training, i.e. zero labeled instances of the test modality are available during training. We develop three methods to perform UMA: Student-Teacher (ST), Contrastive Alignment (CA), and Cross-modal Transfer Through Time (C3T). Our extensive experiments on various camera+IMU datasets compare these methods to each other in the UMA setting, and to their empirical upper bound in the supervised setting. The results indicate C3T is the most robust and highest performing by at least a margin of 8%, and nears the supervised setting performance even in the presence of temporal noise. This method introduces a novel mechanism for aligning signals across time-varying latent vectors, extracted from the receptive field of temporal convolutions. Our findings suggest that C3T has significant potential for developing generalizable models for time-series sensor data, opening new avenues for multi-modal learning in various applications.

In this work, we address the cooperation problem among large language model (LLM) based embodied agents, where agents must cooperate to achieve a common goal. Previous methods often execute actions extemporaneously and incoherently, without long-term strategic and cooperative planning, leading to redundant steps, failures, and even serious repercussions in complex tasks like search-and-rescue missions where discussion and cooperative plan are crucial. To solve this issue, we propose Cooperative Plan Optimization (CaPo) to enhance the cooperation efficiency of LLM-based embodied agents. Inspired by human cooperation schemes, CaPo improves cooperation efficiency with two phases: 1) meta-plan generation, and 2) progress-adaptive meta-plan and execution. In the first phase, all agents analyze the task, discuss, and cooperatively create a meta-plan that decomposes the task into subtasks with detailed steps, ensuring a long-term strategic and coherent plan for efficient coordination. In the second phase, agents execute tasks according to the meta-plan and dynamically adjust it based on their latest progress (e.g., discovering a target object) through multi-turn discussions. This progress-based adaptation eliminates redundant actions, improving the overall cooperation efficiency of agents. Experimental results on the ThreeDworld Multi-Agent Transport and Communicative Watch-And-Help tasks demonstrate that CaPo achieves much higher task completion rate and efficiency compared with state-of-the-arts.

Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at //aka.ms/magentic-one

Existing benchmarks for evaluating foundation models mainly focus on single-document, text-only tasks. However, they often fail to fully capture the complexity of research workflows, which typically involve interpreting non-textual data and gathering information across multiple documents. To address this gap, we introduce M3SciQA, a multi-modal, multi-document scientific question answering benchmark designed for a more comprehensive evaluation of foundation models. M3SciQA consists of 1,452 expert-annotated questions spanning 70 natural language processing paper clusters, where each cluster represents a primary paper along with all its cited documents, mirroring the workflow of comprehending a single paper by requiring multi-modal and multi-document data. With M3SciQA, we conduct a comprehensive evaluation of 18 foundation models. Our results indicate that current foundation models still significantly underperform compared to human experts in multi-modal information retrieval and in reasoning across multiple scientific documents. Additionally, we explore the implications of these findings for the future advancement of applying foundation models in multi-modal scientific literature analysis.

In this work, we introduce the concept of Active Representation Learning, a novel class of problems that intertwines exploration and representation learning within partially observable environments. We extend ideas from Active Simultaneous Localization and Mapping (active SLAM), and translate them to scientific discovery problems, exemplified by adaptive microscopy. We explore the need for a framework that derives exploration skills from representations that are in some sense actionable, aiming to enhance the efficiency and effectiveness of data collection and model building in the natural sciences.

Owing to advancements in deep learning technology, Vision Transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. Nonetheless, ViTs still face some challenges, such as high computational complexity and the absence of desirable inductive biases. To alleviate these issues, {the potential advantages of combining eagle vision with ViTs are explored. We summarize a Bi-Fovea Visual Interaction (BFVI) structure inspired by the unique physiological and visual characteristics of eagle eyes. A novel Bi-Fovea Self-Attention (BFSA) mechanism and Bi-Fovea Feedforward Network (BFFN) are proposed based on this structural design approach, which can be used to mimic the hierarchical and parallel information processing scheme of the biological visual cortex, enabling networks to learn feature representations of targets in a coarse-to-fine manner. Furthermore, a Bionic Eagle Vision (BEV) block is designed as the basic building unit based on the BFSA mechanism and BFFN. By stacking BEV blocks, a unified and efficient family of pyramid backbone networks called Eagle Vision Transformers (EViTs) is developed. Experimental results show that EViTs exhibit highly competitive performance in various computer vision tasks, such as image classification, object detection and semantic segmentation. Compared with other approaches, EViTs have significant advantages, especially in terms of performance and computational efficiency. Code is available at //github.com/nkusyl/EViT

Recent advancements in Generative AI offer promising capabilities for spatial analysis. Despite their potential, the integration of generative AI with established GIS platforms remains underexplored. In this study, we propose a framework for integrating LLMs directly into existing GIS platforms, using QGIS as an example. Our approach leverages the reasoning and programming capabilities of LLMs to autonomously generate spatial analysis workflows and code through an informed agent that has comprehensive documentation of key GIS tools and parameters. The implementation of this framework resulted in the development of a "GIS Copilot" that allows GIS users to interact with QGIS using natural language commands for spatial analysis. The GIS Copilot was evaluated based on three complexity levels: basic tasks that require one GIS tool and typically involve one data layer to perform simple operations; intermediate tasks involving multi-step processes with multiple tools, guided by user instructions; and advanced tasks which involve multi-step processes that require multiple tools but not guided by user instructions, necessitating the agent to independently decide on and executes the necessary steps. The evaluation reveals that the GIS Copilot demonstrates strong potential in automating foundational GIS operations, with a high success rate in tool selection and code generation for basic and intermediate tasks, while challenges remain in achieving full autonomy for more complex tasks. This study contributes to the emerging vision of Autonomous GIS, providing a pathway for non-experts to engage with geospatial analysis with minimal prior expertise. While full autonomy is yet to be achieved, the GIS Copilot demonstrates significant potential for simplifying GIS workflows and enhancing decision-making processes.

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.

Recent developments in 2D visual generation have been remarkably successful. However, 3D and 4D generation remain challenging in real-world applications due to the lack of large-scale 4D data and effective model design. In this paper, we propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life. Due to the lack of real-world 4D data in the community, we first propose a data curation pipeline to obtain camera poses and object motion strength from videos. Based on this pipeline, we introduce a large-scale real-world 4D scene dataset: CamVid-30K. By leveraging all the 3D and 4D data, we develop our framework, GenXD, which allows us to produce any 3D or 4D scene. We propose multiview-temporal modules, which disentangle camera and object movements, to seamlessly learn from both 3D and 4D data. Additionally, GenXD employs masked latent conditions to support a variety of conditioning views. GenXD can generate videos that follow the camera trajectory as well as consistent 3D views that can be lifted into 3D representations. We perform extensive evaluations across various real-world and synthetic datasets, demonstrating GenXD's effectiveness and versatility compared to previous methods in 3D and 4D generation.

Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support recursive multi-agent systems -- where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source and free to use under the MIT license at //github.com/zhudotexe/redel.

北京阿比特科技有限公司