亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a non-parametric Bayesian prior for a family of random probability measures by extending the Polya tree ($PT$) prior to a joint prior for a set of probability measures $G_1,\dots,G_n$, suitable for meta-analysis with event time outcomes. In the application to meta-analysis $G_i$ is the event time distribution specific to study $i$. The proposed model defines a regression on study-specific covariates by introducing increased correlation for any pair of studies with similar characteristics. The desired multivariate $PT$ model is constructed by introducing a hierarchical prior on the conditional splitting probabilities in the $PT$ construction for each of the $G_i$. The hierarchical prior replaces the independent beta priors for the splitting probability in the $PT$ construction with a Gaussian process prior for corresponding (logit) splitting probabilities across all studies. The Gaussian process is indexed by study-specific covariates, introducing the desired dependence with increased correlation for similar studies. The main feature of the proposed construction is (conditionally) conjugate posterior updating with commonly reported inference summaries for event time data. The construction is motivated by a meta-analysis over cancer immunotherapy studies.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 狀態估計 · 真實值 · 線性的 · GROUP ·
2024 年 1 月 30 日

We propose a new metric for robot state estimation based on the recently introduced $\text{SE}_2(3)$ Lie group definition. Our metric is related to prior metrics for SLAM but explicitly takes into account the linear velocity of the state estimate, improving over current pose-based trajectory analysis. This has the benefit of providing a single, quantitative metric to evaluate state estimation algorithms against, while being compatible with existing tools and libraries. Since ground truth data generally consists of pose data from motion capture systems, we also propose an approach to compute the ground truth linear velocity based on polynomial interpolation. Using Chebyshev interpolation and a pseudospectral parameterization, we can accurately estimate the ground truth linear velocity of the trajectory in an optimal fashion with best approximation error. We demonstrate how this approach performs on multiple robotic platforms where accurate state estimation is vital, and compare it to alternative approaches such as finite differences. The pseudospectral parameterization also provides a means of trajectory data compression as an additional benefit. Experimental results show our method provides a valid and accurate means of comparing state estimation systems, which is also easy to interpret and report.

We tackle the problem of Byzantine errors in distributed gradient descent within the Byzantine-resilient gradient coding framework. Our proposed solution can recover the exact full gradient in the presence of $s$ malicious workers with a data replication factor of only $s+1$. It generalizes previous solutions to any data assignment scheme that has a regular replication over all data samples. The scheme detects malicious workers through additional interactive communication and a small number of local computations at the main node, leveraging group-wise comparisons between workers with a provably optimal grouping strategy. The scheme requires at most $s$ interactive rounds that incur a total communication cost logarithmic in the number of data samples.

Recently, low-resource dialogue state tracking (DST) has received increasing attention. First obtaining state values then based on values to generate slot types has made great progress in this task. However, obtaining state values is still an under-studied problem. Existing extraction-based approaches cannot capture values that require the understanding of context and are not generalizable either. To address these issues, we propose a novel State VAlue Generation based framework (SVAG), decomposing DST into state value generation and domain slot generation. Specifically, we propose to generate state values and use self-training to further improve state value generation. Moreover, we design an estimator aiming at detecting incomplete generation and incorrect generation for pseudo-labeled data selection during self-training. Experimental results on the MultiWOZ 2.1 dataset show that our method which has only less than 1 billion parameters achieves state-of-the-art performance under the data ratio settings of 5%, 10%, and 25% when limited to models under 100 billion parameters. Compared to models with more than 100 billion parameters, SVAG still reaches competitive results.

Graph Neural Networks (GNNs) and Transformer have been increasingly adopted to learn the complex vector representations of spatio-temporal graphs, capturing intricate spatio-temporal dependencies crucial for applications such as traffic datasets. Although many existing methods utilize multi-head attention mechanisms and message-passing neural networks (MPNNs) to capture both spatial and temporal relations, these approaches encode temporal and spatial relations independently, and reflect the graph's topological characteristics in a limited manner. In this work, we introduce the Cycle to Mixer (Cy2Mixer), a novel spatio-temporal GNN based on topological non-trivial invariants of spatio-temporal graphs with gated multi-layer perceptrons (gMLP). The Cy2Mixer is composed of three blocks based on MLPs: A message-passing block for encapsulating spatial information, a cycle message-passing block for enriching topological information through cyclic subgraphs, and a temporal block for capturing temporal properties. We bolster the effectiveness of Cy2Mixer with mathematical evidence emphasizing that our cycle message-passing block is capable of offering differentiated information to the deep learning model compared to the message-passing block. Furthermore, empirical evaluations substantiate the efficacy of the Cy2Mixer, demonstrating state-of-the-art performances across various traffic benchmark datasets.

Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{//github.com/Namco0816/ProxyQA}.

We use Markov categories to develop generalizations of the theory of Markov chains and hidden Markov models in an abstract setting. This comprises characterizations of hidden Markov models in terms of local and global conditional independences as well as existing algorithms for Bayesian filtering and smoothing applicable in all Markov categories with conditionals. We show that these algorithms specialize to existing ones such as the Kalman filter, forward-backward algorithm, and the Rauch-Tung-Striebel smoother when instantiated in appropriate Markov categories. Under slightly stronger assumptions, we also prove that the sequence of outputs of the Bayes filter is itself a Markov chain with a concrete formula for its transition maps. There are two main features of this categorical framework. The first is its generality, as it can be used in any Markov category with conditionals. In particular, it provides a systematic unified account of hidden Markov models and algorithms for filtering and smoothing in discrete probability, Gaussian probability, measure-theoretic probability, possibilistic nondeterminism and others at the same time. The second feature is the intuitive visual representation of information flow in these algorithms in terms of string diagrams.

We introduce a general method for achieving robust group-invariance in group-equivariant convolutional neural networks ($G$-CNNs), which we call the $G$-triple-correlation ($G$-TC) layer. The approach leverages the theory of the triple-correlation on groups, which is the unique, lowest-degree polynomial invariant map that is also complete. Many commonly used invariant maps--such as the max--are incomplete: they remove both group and signal structure. A complete invariant, by contrast, removes only the variation due to the actions of the group, while preserving all information about the structure of the signal. The completeness of the triple correlation endows the $G$-TC layer with strong robustness, which can be observed in its resistance to invariance-based adversarial attacks. In addition, we observe that it yields measurable improvements in classification accuracy over standard Max $G$-Pooling in $G$-CNN architectures. We provide a general and efficient implementation of the method for any discretized group, which requires only a table defining the group's product structure. We demonstrate the benefits of this method for $G$-CNNs defined on both commutative and non-commutative groups--$SO(2)$, $O(2)$, $SO(3)$, and $O(3)$ (discretized as the cyclic $C8$, dihedral $D16$, chiral octahedral $O$ and full octahedral $O_h$ groups)--acting on $\mathbb{R}^2$ and $\mathbb{R}^3$ on both $G$-MNIST and $G$-ModelNet10 datasets.

The family of log-concave density functions contains various kinds of common probability distributions. Due to the shape restriction, it is possible to find the nonparametric estimate of the density, for example, the nonparametric maximum likelihood estimate (NPMLE). However, the associated uncertainty quantification of the NPMLE is less well developed. The current techniques for uncertainty quantification are Bayesian, using a Dirichlet process prior combined with the use of Markov chain Monte Carlo (MCMC) to sample from the posterior. In this paper, we start with the NPMLE and use a version of the martingale posterior distribution to establish uncertainty about the NPMLE. The algorithm can be implemented in parallel and hence is fast. We prove the convergence of the algorithm by constructing suitable submartingales. We also illustrate results with different models and settings and some real data, and compare our method with that within the literature.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司