亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Landslides are notoriously difficult to predict. Deep neural networks (DNNs) models are more accurate than statistical models. However, they are uninterpretable, making it difficult to extract mechanistic information about landslide controls in the modeled region. We developed an explainable AI (XAI) model to assess landslide susceptibility that is computationally simple and features high accuracy. We validated it on three different regions of eastern Himalaya that are highly susceptible to landslides. SNNs are computationally much simpler than DNNs, yet achieve similar performance while offering insights regarding the relative importance of landslide control factors in each region. Our analysis highlighted the importance of: 1) the product of slope and precipitation rate and 2) topographic aspects that contribute to high susceptibility in landslide areas. These identified controls suggest that strong slope-climate couplings, along with microclimates, play more dominant roles in eastern Himalayan landslides. The model outperforms physically-based stability and statistical models.

相關內容

We present a new data-driven approach with physics-based priors to scene-level normal estimation from a single polarization image. Existing shape from polarization (SfP) works mainly focus on estimating the normal of a single object rather than complex scenes in the wild. A key barrier to high-quality scene-level SfP is the lack of real-world SfP data in complex scenes. Hence, we contribute the first real-world scene-level SfP dataset with paired input polarization images and ground-truth normal maps. Then we propose a learning-based framework with a multi-head self-attention module and viewing encoding, which is designed to handle increasing polarization ambiguities caused by complex materials and non-orthographic projection in scene-level SfP. Our trained model can be generalized to far-field outdoor scenes as the relationship between polarized light and surface normals is not affected by distance. Experimental results demonstrate that our approach significantly outperforms existing SfP models on two datasets. Our dataset and source code will be publicly available at //github.com/ChenyangLEI/sfp-wild

We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as the Subsampled Newton and Newton Sketch, which can efficiently construct stochastic Hessian estimates for many tasks. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme enjoys local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the iteration, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still enjoys a superlinear convergence~rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.

In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms, providing a useful toolbox for researchers and practitioners to build XAI applications. With the rich application opportunities, explainability is believed to have moved beyond a demand by data scientists or researchers to comprehend the models they develop, to an essential requirement for people to trust and adopt AI deployed in numerous domains. However, explainability is an inherently human-centric property and the field is starting to embrace human-centered approaches. Human-computer interaction (HCI) research and user experience (UX) design in this area are becoming increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey our own and other recent HCI works that take human-centered approaches to design, evaluate, and provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they play in shaping XAI technologies by helping navigate, assess and expand the XAI toolbox: to drive technical choices by users' explainability needs, to uncover pitfalls of existing XAI methods and inform new methods, and to provide conceptual frameworks for human-compatible XAI.

Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.

Earthquake-induced secondary ground failure hazards, such as liquefaction and landslides, result in catastrophic building and infrastructure damage as well as human fatalities. To facilitate emergency responses and mitigate losses, the U.S. Geological Survey provides a rapid hazard estimation system for earthquake-triggered landslides and liquefaction using geospatial susceptibility proxies and ShakeMap ground motion estimates. In this study, we develop a generalized causal graph-based Bayesian network that models the physical interdependencies between geospatial features, seismic ground failures, and building damage, as well as DPMs. Geospatial features provide physical insights for estimating ground failure occurrence while DPMs contain event-specific surface change observations. This physics-informed causal graph incorporates these variables with complex physical relationships in one holistic Bayesian updating scheme to effectively fuse information from both geospatial models and remote sensing data. This framework is scalable and flexible enough to deal with highly complex multi-hazard combinations. We then develop a stochastic variational inference algorithm to jointly update the intractable posterior probabilities of unobserved landslides, liquefaction, and building damage at different locations efficiently. In addition, a local graphical model pruning algorithm is presented to reduce the computational cost of large-scale seismic ground failure estimation. We apply this framework to the September 2018 Hokkaido Iburi-Tobu, Japan (M6.6) earthquake and January 2020 Southwest Puerto Rico (M6.4) earthquake to evaluate the performance of our algorithm.

As machine learning is increasingly applied to high-impact, high-risk domains, there have been a number of new methods aimed at making AI models more human interpretable. Despite the recent growth of interpretability work, there is a lack of systematic evaluation of proposed techniques. In this work, we propose HIVE (Human Interpretability of Visual Explanations), a novel human evaluation framework for visual interpretability methods that allows for falsifiable hypothesis testing, cross-method comparison, and human-centered evaluation. To the best of our knowledge, this is the first work of its kind. Using HIVE, we conduct IRB-approved human studies with nearly 1000 participants and evaluate four methods that represent the diversity of computer vision interpretability works: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest that explanations engender human trust, even for incorrect predictions, yet are not distinct enough for users to distinguish between correct and incorrect predictions. We open-source HIVE to enable future studies and to encourage more human-centered approaches to interpretability research.

A recent study by Ahmed and Devanbu reported that using a corpus of code written in multilingual datasets to fine-tune multilingual Pre-trained Language Models (PLMs) achieves higher performance as opposed to using a corpus of code written in just one programming language. However, no analysis was made with respect to fine-tuning monolingual PLMs. Furthermore, some programming languages are inherently different and code written in one language usually cannot be interchanged with the others, i.e., Ruby and Java code possess very different structure. To better understand how monolingual and multilingual PLMs affect different programming languages, we investigate 1) the performance of PLMs on Ruby for two popular Software Engineering tasks: Code Summarization and Code Search, 2) the strategy (to select programming languages) that works well on fine-tuning multilingual PLMs for Ruby, and 3) the performance of the fine-tuned PLMs on Ruby given different code lengths. In this work, we analyze over a hundred of pre-trained and fine-tuned models. Our results show that 1) multilingual PLMs have a lower Performance-to-Time Ratio (the BLEU, METEOR, or MRR scores over the fine-tuning duration) as compared to monolingual PLMs, 2) our proposed strategy to select target programming languages to fine-tune multilingual PLMs is effective: it reduces the time to fine-tune yet achieves higher performance in Code Summarization and Code Search tasks, and 3) our proposed strategy consistently shows good performance on different code lengths.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, the interpretability is always the Achilles' heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of low interpretability of their black-box representations. We believe that high model interpretability may help people to break several bottlenecks of deep learning, e.g., learning from very few annotations, learning via human-computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and we revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.

北京阿比特科技有限公司