亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the increasing interest in blockchain technology for fostering secure, auditable, decentralized applications, a set of challenges associated with this technology need to be addressed. In this letter, we focus on the delay associated with Proof-of-Work (PoW)-based blockchain networks, whereby participants validate the new information to be appended to a distributed ledger via consensus to confirm transactions. We propose a novel end-to-end latency model based on batch-service queuing theory that characterizes timers and forks for the first time. Furthermore, we derive an estimation of optimum block size analytically. Endorsed by simulation results, we show that the optimal block size approximation is a consistent method that leads to close-to-optimal performance by significantly reducing the overheads associated with blockchain applications.

相關內容

We study a new two-time-scale stochastic gradient method for solving optimization problems, where the gradients are computed with the aid of an auxiliary variable under samples generated by time-varying Markov random processes parameterized by the underlying optimization variable. These time-varying samples make gradient directions in our update biased and dependent, which can potentially lead to the divergence of the iterates. In our two-time-scale approach, one scale is to estimate the true gradient from these samples, which is then used to update the estimate of the optimal solution. While these two iterates are implemented simultaneously, the former is updated "faster" (using bigger step sizes) than the latter (using smaller step sizes). Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale stochastic gradient method. In particular, we provide explicit formulas for the convergence rates of this method under different structural assumptions, namely, strong convexity, convexity, the Polyak-Lojasiewicz condition, and general non-convexity. We apply our framework to two problems in control and reinforcement learning. First, we look at the standard online actor-critic algorithm over finite state and action spaces and derive a convergence rate of O(k^(-2/5)), which recovers the best known rate derived specifically for this problem. Second, we study an online actor-critic algorithm for the linear-quadratic regulator and show that a convergence rate of O(k^(-2/3)) is achieved. This is the first time such a result is known in the literature. Finally, we support our theoretical analysis with numerical simulations where the convergence rates are visualized.

As mobile edge computing (MEC) finds widespread use for relieving the computational burden of compute- and interaction-intensive applications on end user devices, understanding the resulting delay and cost performance is drawing significant attention. While most existing works focus on singletask offloading in single-hop MEC networks, next generation applications (e.g., industrial automation, augmented/virtual reality) require advance models and algorithms for dynamic configuration of multi-task services over multi-hop MEC networks. In this work, we leverage recent advances in dynamic cloud network control to provide a comprehensive study of the performance of multi-hop MEC networks, addressing the key problems of multi-task offloading, timely packet scheduling, and joint computation and communication resource allocation. We present a fully distributed algorithm based on Lyapunov control theory that achieves throughput-optimal performance with delay and cost guarantees. Simulation results validate our theoretical analysis and provide insightful guidelines on the interplay between communication and computation resources in MEC networks.

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.

Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.

Recruitment in large organisations often involves interviewing a large number of candidates. The process is resource intensive and complex. Therefore, it is important to carry it out efficiently and effectively. Planning the selection process consists of several problems, each of which maps to one or the other well-known computing problem. Research that looks at each of these problems in isolation is rich and mature. However, research that takes an integrated view of the problem is not common. In this paper, we take two of the most important aspects of the application processing problem, namely review/interview panel creation and interview scheduling. We have implemented our approach as a prototype system and have used it to automatically plan the interview process of a real-life data set. Our system provides a distinctly better plan than the existing practice, which is predominantly manual. We have explored various algorithmic options and have customised them to solve these panel creation and interview scheduling problems. We have evaluated these design options experimentally on a real data set and have presented our observations. Our prototype and experimental process and results may be a very good starting point for a full-fledged development project for automating application processing process.

The problem of Byzantine consensus has been key to designing secure distributed systems. However, it is particularly difficult, mainly due to the presence of Byzantine processes that act arbitrarily and the unknown message delays in general networks. Although it is well known that both safety and liveness are at risk as soon as $n/3$ Byzantine processes fail, very few works attempted to characterize precisely the faults that produce safety violations from the faults that produce termination violations. In this paper, we present a new lower bound on the solvability of the consensus problem by distinguishing deceitful faults violating safety and benign faults violating termination from the more general Byzantine faults, in what we call the Byzantine-deceitful-benign fault model. We show that one cannot solve consensus if $n\leq 3t+d+2q$ with $t$ Byzantine processes, $d$ deceitful processes, and $q$ benign processes. In addition, we show that this bound is tight by presenting the Basilic class of consensus protocols that solve consensus when $n > 3t+d+2q$. These protocols differ in the number of processes from which they wait to receive messages before progressing. Each of these protocols is thus better suited for some applications depending on the predominance of benign or deceitful faults. Finally, we study the fault tolerance of the Basilic class of consensus protocols in the context of blockchains that need to solve the weaker problem of eventual consensus. We demonstrate that Basilic solves this problem with only $n > 2t+d+q$, hence demonstrating how it can strengthen blockchain security.

After the success of the Bitcoin blockchain, came several cryptocurrencies and blockchain solutions in the last decade. Nonetheless, Blockchain-based systems still suffer from low transaction rates and high transaction processing latencies, which hinder blockchains' scalability. An entire class of solutions, called Layer-1 scalability solutions, have attempted to incrementally improve such limitations by adding/modifying fundamental blockchain attributes. Recently, a completely different class of works, called Layer-2 protocols, have emerged to tackle the blockchain scalability issues using unconventional approaches. Layer-2 protocols improve transaction processing rates, periods, and fees by minimizing the use of underlying slow and costly blockchains. In fact, the main chain acts just as an instrument for trust establishment and dispute resolution among Layer-2 participants, where only a few transactions are dispatched to the main chain. Thus, Layer-2 blockchain protocols have the potential to transform the domain. However, rapid and discrete developments have resulted in diverse branches of Layer-2 protocols. In this work, we systematically create a broad taxonomy of such protocols and implementations. We discuss each Layer-2 protocol class in detail and also elucidate their respective approaches, salient features, requirements, etc. Moreover, we outline the issues related to these protocols along with a comparative discussion. Our thorough study will help further systematize the knowledge dispersed in the domain and help the readers to better understand the field of Layer-2 protocols.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司