亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The motivation for this paper comes from the ongoing SARS-CoV-2 Pandemic. Its goal is to present a previously neglected approach to non-adaptive group testing and describes it in terms of residuated pairs on partially ordered sets. Our investigation has the advantage, as it naturally yields an efficient decision scheme (decoder) for any given testing scheme. This decoder allows to detect a large amount of infection patterns. Apart from this, we devise a construction of good group testing schemes that are based on incidence matrices of finite partial linear spaces. The key idea is to exploit the structure of these matrices and make them available as test matrices for group testing. These matrices may generally be tailored for different estimated disease prevalence levels. As an example, we discuss the group testing schemes based on generalized quadrangles. In the context at hand, we state our results only for the error-free case so far. An extension to a noisy scenario is desirable and will be treated in a subsequent account on the topic.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · MoDELS · 講稿 · INTERACT · 相互獨立的 ·
2022 年 4 月 20 日

Current challenges of the manufacturing industry require modular and changeable manufacturing systems that can be adapted to variable conditions with little effort. At the same time, production recipes typically represent important company know-how that should not be directly tied to changing plant configurations. Thus, there is a need to model general production recipes independent of specific plant layouts. For execution of such a recipe however, a binding to then available production resources needs to be made. In this contribution, select a suitable modeling language to model and execute such recipes. Furthermore, we present an approach to solve the issue of recipe modeling and execution in modular plants using semantically modeled capabilities and skills as well as BPMN. We make use of BPMN to model \emph{capability processes}, i.e. production processes referencing abstract descriptions of resource functions. These capability processes are not bound to a certain plant layout, as there can be multiple resources fulfilling the same capability. For execution, every capability in a capability process is replaced by a skill realizing it, effectively creating a \emph{skill process} consisting of various skill invocations. The presented solution is capable of orchestrating and executing complex processes that integrate production steps with typical IT functionalities such as error handling, user interactions and notifications. Benefits of the approach are demonstrated using a flexible manufacturing system.

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.

White noise is a fundamental and fairly well understood stochastic process that conforms the conceptual basis for many other processes, as well as for the modeling of time series. Here we push a fresh perspective toward white noise that, grounded on combinatorial considerations, contributes to give new interesting insights both for modelling and theoretical purposes. To this aim, we incorporate the ordinal pattern analysis approach which allows us to abstract a time series as a sequence of patterns and their associated permutations, and introduce a simple functional over permutations that partitions them into classes encoding their level of asymmetry. We compute the exact probability mass function (p.m.f.) of this functional over the symmetric group of degree $n$, thus providing the description for the case of an infinite white noise realization. This p.m.f. can be conveniently approximated by a continuous probability density from an exponential family, the Gaussian, hence providing natural sufficient statistics that render a convenient and simple statistical analysis through ordinal patterns. Such analysis is exemplified on experimental data for the spatial increments from tracks of gold nanoparticles in 3D diffusion.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a 'geometric unification' endeavour, in the spirit of Felix Klein's Erlangen Program, serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.

We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.

Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.

北京阿比特科技有限公司