亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at //github.com/xiaoman-liu/NCPP.

相關內容

To solve ever more complex problems, Deep Neural Networks are scaled to billions of parameters, leading to huge computational costs. An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of these often over-parameterized networks. Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion. We extend the current state by proposing to explicitly optimize hyperparameters of attribution methods for the task of pruning, and further include transformer-based networks in our analysis. Our approach yields higher model compression rates of large transformer- and convolutional architectures (VGG, ResNet, ViT) compared to previous works, while still attaining high performance on ImageNet classification tasks. Here, our experiments indicate that transformers have a higher degree of over-parameterization compared to convolutional neural networks. Code is available at $\href{//github.com/erfanhatefi/Pruning-by-eXplaining-in-PyTorch}{\text{this https link}}$.

Effective code optimization in compilers is crucial for computer and software engineering. The success of these optimizations primarily depends on the selection and ordering of the optimization passes applied to the code. While most compilers rely on a fixed sequence of optimization passes, current methods to find the optimal sequence either employ impractically slow search algorithms or learning methods that struggle to generalize to code unseen during training. We introduce CompilerDream, a model-based reinforcement learning approach to general code optimization. CompilerDream comprises a compiler world model that accurately simulates the intrinsic properties of optimization passes and an agent trained on this model to produce effective optimization strategies. By training on a large-scale program dataset, CompilerDream is equipped to serve as a general code optimizer across various application scenarios and source-code languages. Our extensive experiments first highlight CompilerDream's strong optimization capabilities for autotuning, where it leads the CompilerGym leaderboard. More importantly, the zero-shot generalization ability of large-scale trained compiler world model and agent, excels across diverse datasets, surpassing LLVM's built-in optimizations and other state-of-the-art methods in both settings of value prediction and end-to-end code optimization.

Smart contracts, the cornerstone of decentralized applications, have become increasingly prominent in revolutionizing the digital landscape. However, vulnerabilities in smart contracts pose great risks to user assets and undermine overall trust in decentralized systems. But current smart contract fuzzers fall short of expectations in testing efficiency for two primary reasons. Firstly, smart contracts are stateful programs, and existing approaches, primarily coverage-guided, lack effective feedback from the contract state. Consequently, they struggle to effectively explore the contract state space. Secondly, coverage-guided fuzzers, aiming for comprehensive program coverage, may lead to a wastage of testing resources on benign code areas. This wastage worsens in smart contract testing, as the mix of code and state spaces further complicates comprehensive testing. To address these challenges, we propose Vulseye, a stateful directed graybox fuzzer for smart contracts guided by vulnerabilities. Different from prior works, Vulseye achieves stateful directed fuzzing by prioritizing testing resources to code areas and contract states that are more prone to vulnerabilities. We introduce Code Targets and State Targets into fuzzing loops as the testing targets of Vulseye. We use static analysis and pattern matching to pinpoint Code Targets, and propose a scalable backward analysis algorithm to specify State Targets. We design a novel fitness metric that leverages feedback from both the contract code space and state space, directing fuzzing toward these targets. With the guidance of code and state targets, Vulseye alleviates the wastage of testing resources on benign code areas and achieves effective stateful fuzzing. In comparison with state-of-the-art fuzzers, Vulseye demonstrated superior effectiveness and efficiency.

Automated driving systems are an integral part of the automotive industry. Tools such as Robot Operating System and simulators support their development. However, in the end, the developers must test their algorithms on a real vehicle. To better observe the difference between reality and simulation--the reality gap--digital twin technology offers real-time communication between the real vehicle and its model. We present low fidelity digital twin generator and describe situations where automatic generation is preferable to high fidelity simulation. We validated our approach of generating a virtual environment with a vehicle model by replaying the data recorded from the real vehicle.

Research on knowledge graph embeddings has recently evolved into knowledge base embeddings, where the goal is not only to map facts into vector spaces but also constrain the models so that they take into account the relevant conceptual knowledge available. This paper examines recent methods that have been proposed to embed knowledge bases in description logic into vector spaces through the lens of their geometric-based semantics. We identify several relevant theoretical properties, which we draw from the literature and sometimes generalize or unify. We then investigate how concrete embedding methods fit in this theoretical framework.

To alleviate the problem of information explosion, recommender systems are widely deployed to provide personalized information filtering services. Usually, embedding tables are employed in recommender systems to transform high-dimensional sparse one-hot vectors into dense real-valued embeddings. However, the embedding tables are huge and account for most of the parameters in industrial-scale recommender systems. In order to reduce memory costs and improve efficiency, various approaches are proposed to compress the embedding tables. In this survey, we provide a comprehensive review of embedding compression approaches in recommender systems. We first introduce deep learning recommendation models and the basic concept of embedding compression in recommender systems. Subsequently, we systematically organize existing approaches into three categories, namely low-precision, mixed-dimension, and weight-sharing, respectively. Lastly, we summarize the survey with some general suggestions and provide future prospects for this field.

Road traffic congestion prediction is a crucial component of intelligent transportation systems, since it enables proactive traffic management, enhances suburban experience, reduces environmental impact, and improves overall safety and efficiency. Although there are several public datasets, especially for metropolitan areas, these datasets may not be applicable to practical scenarios due to insufficiency in the scale of data (i.e. number of sensors and road links) and several external factors like different characteristics of the target area such as urban, highways and the data collection location. To address this, this paper introduces a novel IBB Traffic graph dataset as an alternative benchmark dataset to mitigate these limitations and enrich the literature with new geographical characteristics. IBB Traffic graph dataset covers the sensor data collected at 2451 distinct locations. Moreover, we propose a novel Road Traffic Prediction Model that strengthens temporal links through feature engineering, node embedding with GLEE to represent inter-related relationships within the traffic network, and traffic prediction with ExtraTrees. The results indicate that the proposed model consistently outperforms the baseline models, demonstrating an average accuracy improvement of 4%.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

北京阿比特科技有限公司