In this article, we propose a novel navigation framework that leverages a two layered graph representation of the environment for efficient large-scale exploration, while it integrates a novel uncertainty awareness scheme to handle dynamic scene changes in previously explored areas. The framework is structured around a novel goal oriented graph representation, that consists of, i) the local sub-graph and ii) the global graph layer respectively. The local sub-graphs encode local volumetric gain locations as frontiers, based on the direct pointcloud visibility, allowing fast graph building and path planning. Additionally, the global graph is build in an efficient way, using node-edge information exchange only on overlapping regions of sequential sub-graphs. Different from the state-of-the-art graph based exploration methods, the proposed approach efficiently re-uses sub-graphs built in previous iterations to construct the global navigation layer. Another merit of the proposed scheme is the ability to handle scene changes (e.g. blocked pathways), adaptively updating the obstructed part of the global graph from traversable to not-traversable. This operation involved oriented sample space of a path segment in the global graph layer, while removing the respective edges from connected nodes of the global graph in cases of obstructions. As such, the exploration behavior is directing the robot to follow another route in the global re-positioning phase through path-way updates in the global graph. Finally, we showcase the performance of the method both in simulation runs as well as deployed in real-world scene involving a legged robot carrying camera and lidar sensor.
We explore how reconciling several foundation models (large language models and vision-language models) with a novel unified memory mechanism could tackle the challenging video understanding problem, especially capturing the long-term temporal relations in lengthy videos. In particular, the proposed multimodal agent VideoAgent: 1) constructs a structured memory to store both the generic temporal event descriptions and object-centric tracking states of the video; 2) given an input task query, it employs tools including video segment localization and object memory querying along with other visual foundation models to interactively solve the task, utilizing the zero-shot tool-use ability of LLMs. VideoAgent demonstrates impressive performances on several long-horizon video understanding benchmarks, an average increase of 6.6% on NExT-QA and 26.0% on EgoSchema over baselines, closing the gap between open-sourced models and private counterparts including Gemini 1.5 Pro.
In this work, we introduce the Virtual In-Hand Eye Transformer (VIHE), a novel method designed to enhance 3D manipulation capabilities through action-aware view rendering. VIHE autoregressively refines actions in multiple stages by conditioning on rendered views posed from action predictions in the earlier stages. These virtual in-hand views provide a strong inductive bias for effectively recognizing the correct pose for the hand, especially for challenging high-precision tasks such as peg insertion. On 18 manipulation tasks in RLBench simulated environments, VIHE achieves a new state-of-the-art, with a 12% absolute improvement, increasing from 65% to 77% over the existing state-of-the-art model using 100 demonstrations per task. In real-world scenarios, VIHE can learn manipulation tasks with just a handful of demonstrations, highlighting its practical utility. Videos and code implementation can be found at our project site: //vihe-3d.github.io.
In this paper, we discuss the development of an annotation schema to build datasets for evaluating the offline harm potential of social media texts. We define "harm potential" as the potential for an online public post to cause real-world physical harm (i.e., violence). Understanding that real-world violence is often spurred by a web of triggers, often combining several online tactics and pre-existing intersectional fissures in the social milieu, to result in targeted physical violence, we do not focus on any single divisive aspect (i.e., caste, gender, religion, or other identities of the victim and perpetrators) nor do we focus on just hate speech or mis/dis-information. Rather, our understanding of the intersectional causes of such triggers focuses our attempt at measuring the harm potential of online content, irrespective of whether it is hateful or not. In this paper, we discuss the development of a framework/annotation schema that allows annotating the data with different aspects of the text including its socio-political grounding and intent of the speaker (as expressed through mood and modality) that together contribute to it being a trigger for offline harm. We also give a comparative analysis and mapping of our framework with some of the existing frameworks.
A novel method, the Pareto Envelope Augmented with Reinforcement Learning (PEARL), has been developed to address the challenges posed by multi-objective problems, particularly in the field of engineering where the evaluation of candidate solutions can be time-consuming. PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy, eliminating the need for multiple neural networks to independently solve simpler sub-problems. Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains. Curriculum Learning is harnessed to effectively manage constraints in these versions. PEARL's performance is first evaluated on classical multi-objective benchmarks. Additionally, it is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability. The first problem involves optimizing the Cycle length and the rod-integrated peaking factor as the primary objectives, while the second problem incorporates the mean average enrichment as an additional objective. Furthermore, PEARL addresses three types of constraints related to boron concentration, peak pin burnup, and peak pin power. The results are systematically compared against conventional approaches. Notably, PEARL, specifically the PEARL-NdS variant, efficiently uncovers a Pareto front without necessitating additional efforts from the algorithm designer, as opposed to a single optimization with scaled objectives. It also outperforms the classical approach across multiple performance metrics, including the Hyper-volume.
We present a novel end-to-end diffusion-based trajectory generation method, DTG, for mapless global navigation in challenging outdoor scenarios with occlusions and unstructured off-road features like grass, buildings, bushes, etc. Given a distant goal, our approach computes a trajectory that satisfies the following goals: (1) minimize the travel distance to the goal; (2) maximize the traversability by choosing paths that do not lie in undesirable areas. Specifically, we present a novel Conditional RNN(CRNN) for diffusion models to efficiently generate trajectories. Furthermore, we propose an adaptive training method that ensures that the diffusion model generates more traversable trajectories. We evaluate our methods in various outdoor scenes and compare the performance with other global navigation algorithms on a Husky robot. In practice, we observe at least a 15% improvement in traveling distance and around a 7% improvement in traversability.
In this paper, we explore the capabilities of LLMs in capturing lexical-semantic knowledge from WordNet on the example of the LLaMA-2-7b model and test it on multiple lexical semantic tasks. As the outcome of our experiments, we present TaxoLLaMA, the everything-in-one model, lightweight due to 4-bit quantization and LoRA. It achieves 11 SotA results, 4 top-2 results out of 16 tasks for the Taxonomy Enrichment, Hypernym Discovery, Taxonomy Construction, and Lexical Entailment tasks. Moreover, it demonstrates very strong zero-shot performance on Lexical Entailment and Taxonomy Construction with no fine-tuning. We also explore its hidden multilingual and domain adaptation capabilities with a little tuning or few-shot learning. All datasets, code, and model are available online at //github.com/VityaVitalich/TaxoLLaMA
In this work, we investigate the potential of large language models (LLMs) based agents to automate data science tasks, with the goal of comprehending task requirements, then building and training the best-fit machine learning models. Despite their widespread success, existing LLM agents are hindered by generating unreasonable experiment plans within this scenario. To this end, we present DS-Agent, a novel automatic framework that harnesses LLM agent and case-based reasoning (CBR). In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle, and facilitate consistent performance improvement through the feedback mechanism. Moreover, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm to adapt past successful solutions from the development stage for direct code generation, significantly reducing the demand on foundational capabilities of LLMs. Empirically, DS-Agent with GPT-4 achieves an unprecedented 100% success rate in the development stage, while attaining 36% improvement on average one pass rate across alternative LLMs in the deployment stage. In both stages, DS-Agent achieves the best rank in performance, costing \$1.60 and \$0.13 per run with GPT-4, respectively. Our code is open-sourced at //github.com/guosyjlu/DS-Agent.
In this article, we present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP), with a focus of advancing DP's deployment in real-world applications. Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier," a workshop held in July 2022 with experts from industry, academia, and the public sector seeking answers to broad questions pertaining to privacy and its implications in the design of industry-grade systems. This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions. Covering a wide spectrum of topics, this article delves into the infrastructure needs for designing private systems, methods for achieving better privacy/utility trade-offs, performing privacy attacks and auditing, as well as communicating privacy with broader audiences and stakeholders.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.