亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, several morphologies, each with its advantages, have been proposed for the \textit{GelSight} high-resolution tactile sensors. However, existing simulation methods are limited to flat-surface sensors, which prevents their usage with the newer sensors of non-flat morphologies in Sim2Real experiments. In this paper, we extend a previously proposed GelSight simulation method developed for flat-surface sensors and propose a novel method for curved sensors. In particular, we address the simulation of light rays travelling through a curved tactile membrane in the form of geodesic paths. The method is validated by simulating the finger-shaped GelTip sensor and comparing the generated synthetic tactile images against the corresponding real images. Our extensive experiments show that combining the illumination generated from the geodesic paths, with a background image from the real sensor, produces the best results when compared to the lighting generated by direct linear paths in the same conditions. As the method is parameterised by the sensor mesh, it can be applied in principle to simulate a tactile sensor of any morphology. The proposed method not only unlocks simulating existing optical tactile sensors of complex morphologies but also enables experimenting with sensors of novel morphologies, before the fabrication of the real sensor. Project website: //danfergo.github.io/geltip-sim

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

Wearable sensor-based Human Action Recognition (HAR) has made significant strides in recent times. However, the accuracy performance of wearable sensor-based HAR is currently still lagging behind that of visual modalities-based systems, such as RGB video and depth data. Although diverse input modalities can provide complementary cues and improve the accuracy performance of HAR, wearable devices can only capture limited kinds of non-visual time series input, such as accelerometers and gyroscopes. This limitation hinders the deployment of multimodal simultaneously using visual and non-visual modality data in parallel on current wearable devices. To address this issue, we propose a novel Physical-aware Cross-modal Adversarial (PCA) framework that utilizes only time-series accelerometer data from four inertial sensors for the wearable sensor-based HAR problem. Specifically, we propose an effective IMU2SKELETON network to produce corresponding synthetic skeleton joints from accelerometer data. Subsequently, we imposed additional constraints on the synthetic skeleton data from a physical perspective, as accelerometer data can be regarded as the second derivative of the skeleton sequence coordinates. After that, the original accelerometer as well as the constrained skeleton sequence were fused together to make the final classification. In this way, when individuals wear wearable devices, the devices can not only capture accelerometer data, but can also generate synthetic skeleton sequences for real-time wearable sensor-based HAR applications that need to be conducted anytime and anywhere. To demonstrate the effectiveness of our proposed PCA framework, we conduct extensive experiments on Berkeley-MHAD, UTD-MHAD, and MMAct datasets. The results confirm that the proposed PCA approach has competitive performance compared to the previous methods on the mono sensor-based HAR classification problem.

Diffusion models are the current state-of-the-art in image generation, synthesizing high-quality images by breaking down the generation process into many fine-grained denoising steps. Despite their good performance, diffusion models are computationally expensive, requiring many neural function evaluations (NFEs). In this work, we propose an anytime diffusion-based method that can generate viable images when stopped at arbitrary times before completion. Using existing pretrained diffusion models, we show that the generation scheme can be recomposed as two nested diffusion processes, enabling fast iterative refinement of a generated image. In experiments on ImageNet and Stable Diffusion-based text-to-image generation, we show, both qualitatively and quantitatively, that our method's intermediate generation quality greatly exceeds that of the original diffusion model, while the final generation result remains comparable. We illustrate the applicability of Nested Diffusion in several settings, including for solving inverse problems, and for rapid text-based content creation by allowing user intervention throughout the sampling process.

Exploring the origin and properties of magnetic fields is crucial to the development of many fields such as physics, astronomy and meteorology. We focus on the edge element approximation and theoretical analysis of celestial dynamo system with quasi-vacuum boundary conditions. The system not only ensures that the magnetic field on the spherical shell is generated from the dynamo model, but also provides convenience for the application of the edge element method. We demonstrate the existence, uniqueness and stability of the solution to the system by the fixed point theorem. Then, we approximate the system using the edge element method, which is more efficient in dealing with electromagnetic field problems. Moreover, we also discuss the stability of the corresponding discrete scheme. And the convergence is demonstrated by later numerical tests. Finally, we simulate the three-dimensional time evolution of the spherical interface dynamo model, and the characteristics of the simulated magnetic field are consistent with existing work.

We consider the problem of mixed sparse linear regression with two components, where two real $k$-sparse signals $\beta_1, \beta_2$ are to be recovered from $n$ unlabelled noisy linear measurements. The sparsity is allowed to be sublinear in the dimension, and additive noise is assumed to be independent Gaussian with variance $\sigma^2$. Prior work has shown that the problem suffers from a $\frac{k}{SNR^2}$-to-$\frac{k^2}{SNR^2}$ statistical-to-computational gap, resembling other computationally challenging high-dimensional inference problems such as Sparse PCA and Robust Sparse Mean Estimation; here $SNR$ is the signal-to-noise ratio. We establish the existence of a more extensive computational barrier for this problem through the method of low-degree polynomials, but show that the problem is computationally hard only in a very narrow symmetric parameter regime. We identify a smooth information-computation tradeoff between the sample complexity $n$ and runtime for any randomized algorithm in this hard regime. Via a simple reduction, this provides novel rigorous evidence for the existence of a computational barrier to solving exact support recovery in sparse phase retrieval with sample complexity $n = \tilde{o}(k^2)$. Our second contribution is to analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem in $O(np)$ time with square-root the number of samples and matches the sample complexity required for (non-mixed) sparse linear regression; this allows the recovery problem to be subsequently solved by state-of-the-art techniques from the dense case. As a special case of our results, we show that this simple algorithm is order-optimal among a large family of algorithms in solving exact signed support recovery in sparse linear regression.

Tactile sensing is a necessary capability for a robotic hand to perform fine manipulations and interact with the environment. Optical sensors are a promising solution for high-resolution contact estimation. Nevertheless, they are usually not easy to fabricate and require individual calibration in order to acquire sufficient accuracy. In this letter, we propose AllSight, an optical tactile sensor with a round 3D structure potentially designed for robotic in-hand manipulation tasks. AllSight is mostly 3D printed making it low-cost, modular, durable and in the size of a human thumb while with a large contact surface. We show the ability of AllSight to learn and estimate a full contact state, i.e., contact position, forces and torsion. With that, an experimental benchmark between various configurations of illumination and contact elastomers are provided. Furthermore, the robust design of AllSight provides it with a unique zero-shot capability such that a practitioner can fabricate the open-source design and have a ready-to-use state estimation model. A set of experiments demonstrates the accurate state estimation performance of AllSight.

This paper presents a novel approach for optical flow control of Micro Air Vehicles (MAVs). The task is challenging due to the nonlinearity of optical flow observables. Our proposed Incremental Nonlinear Dynamic Inversion (INDI) control scheme incorporates an efficient data-driven method to address the nonlinearity. It directly estimates the inverse of the time-varying control effectiveness in real-time, eliminating the need for the constant assumption and avoiding high computation in traditional INDI. This approach effectively handles fast-changing system dynamics commonly encountered in optical flow control, particularly height-dependent changes. We demonstrate the robustness and efficiency of the proposed control scheme in numerical simulations and also real-world flight tests: multiple landings of an MAV on a static and flat surface with various tracking setpoints, hovering and landings on moving and undulating surfaces. Despite being challenged with the presence of noisy optical flow estimates and the lateral and vertical movement of the landing surfaces, the MAV is able to successfully track or land on the surface with an exponential decay of both height and vertical velocity at almost the same time, as desired.

In this paper, we investigate the Euler-Bernoulli fourth-order boundary value problem (BVP) $w^{(4)}=f(x,w)$, $x\in \intcc{a,b}$, with specified values of $w$ and $w''$ at the end points, where the behaviour of the right-hand side $f$ is motivated by biomechanical, electromechanical, and structural applications incorporating contact forces. In particular, we consider the case when $f$ is bounded above and monotonically decreasing with respect to its second argument. First, we prove the existence and uniqueness of solutions to the BVP. We then study numerical solutions to the BVP, where we resort to spatial discretization by means of finite difference. Similar to the original continuous-space problem, the discrete problem always possesses a unique solution. In the case of a piecewise linear instance of $f$, the discrete problem is an example of the absolute value equation. We show that solutions to this absolute value equation can be obtained by means of fixed-point iterations, and that solutions to the absolute value equation converge to solutions of the continuous BVP. We also illustrate the performance of the fixed-point iterations through a numerical example.

Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show for the first time de-novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.

Along with the nearing completion of the Square Kilometre Array (SKA), comes an increasing demand for accurate and reliable automated solutions to extract valuable information from the vast amount of data it will allow acquiring. Automated source finding is a particularly important task in this context, as it enables the detection and classification of astronomical objects. Deep-learning-based object detection and semantic segmentation models have proven to be suitable for this purpose. However, training such deep networks requires a high volume of labeled data, which is not trivial to obtain in the context of radio astronomy. Since data needs to be manually labeled by experts, this process is not scalable to large dataset sizes, limiting the possibilities of leveraging deep networks to address several tasks. In this work, we propose RADiff, a generative approach based on conditional diffusion models trained over an annotated radio dataset to generate synthetic images, containing radio sources of different morphologies, to augment existing datasets and reduce the problems caused by class imbalances. We also show that it is possible to generate fully-synthetic image-annotation pairs to automatically augment any annotated dataset. We evaluate the effectiveness of this approach by training a semantic segmentation model on a real dataset augmented in two ways: 1) using synthetic images obtained from real masks, and 2) generating images from synthetic semantic masks. We show an improvement in performance when applying augmentation, gaining up to 18% in performance when using real masks and 4% when augmenting with synthetic masks. Finally, we employ this model to generate large-scale radio maps with the objective of simulating Data Challenges.

Grammatical Error Correction (GEC) is the task of correcting errorful sentences into grammatically correct, semantically consistent, and coherent sentences. Popular GEC models either use large-scale synthetic corpora or use a large number of human-designed rules. The former is costly to train, while the latter requires quite a lot of human expertise. In recent years, AMR, a semantic representation framework, has been widely used by many natural language tasks due to its completeness and flexibility. A non-negligible concern is that AMRs of grammatically incorrect sentences may not be exactly reliable. In this paper, we propose the AMR-GEC, a seq-to-seq model that incorporates denoised AMR as additional knowledge. Specifically, We design a semantic aggregated GEC model and explore denoising methods to get AMRs more reliable. Experiments on the BEA-2019 shared task and the CoNLL-2014 shared task have shown that AMR-GEC performs comparably to a set of strong baselines with a large number of synthetic data. Compared with the T5 model with synthetic data, AMR-GEC can reduce the training time by 32\% while inference time is comparable. To the best of our knowledge, we are the first to incorporate AMR for grammatical error correction.

北京阿比特科技有限公司