亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We report preliminary results on using the MEMCPU\texttrademark{} Platform to compute the prime factorization of large biprimes. The first approach, the direct model, directly returns the factors of a given biprime. The second approach, the congruence model, returns smooth congruences to address the bottleneck of standard sieve methods. The models have size-dependent structure, and the MEMCPU Platform requires structure-dependent tuning for optimal performance. Therefore, for both models, we tuned the platform on sample problems up to a given size according to available resources. Then we generated RSA-like benchmark biprimes to perform rigorous scaling analysis. The MEMCPU timings over the tuned range followed low degree polynomials in the number of bits, markedly different than other tested methods including general number field sieve. MEMCPU's congruence model was the most promising, which was scaled up to 300-bit factorization problems while following a $2^{nd}$ degree polynomial fit. We also discuss the approach to tuning the MEMCPU Platform for problems beyond the reach of today's most advanced methods. Finally, basic analysis of the acceleration expected from an ASIC implementation is provided and suggests the possibility of real time factorization of large biprimes.

相關內容

The ever-increasing use of synthetically generated content in different sectors of our everyday life, one for all media information, poses a strong need for deepfake detection tools in order to avoid the proliferation of altered messages. The process to identify manipulated content, in particular images and videos, is basically performed by looking for the presence of some inconsistencies and/or anomalies specifically due to the fake generation process. Different techniques exist in the scientific literature that exploit diverse ad-hoc features in order to highlight possible modifications. In this paper, we propose to investigate how deepfake creation can impact on the characteristics that the whole scene had at the time of the acquisition. In particular, when an image (video) is captured the overall geometry of the scene (e.g. surfaces) and the acquisition process (e.g. illumination) determine a univocal environment that is directly represented by the image pixel values; all these intrinsic relations are possibly changed by the deepfake generation process. By resorting to the analysis of the characteristics of the surfaces depicted in the image it is possible to obtain a descriptor usable to train a CNN for deepfake detection: we refer to such an approach as SurFake. Experimental results carried out on the FF++ dataset for different kinds of deepfake forgeries and diverse deep learning models confirm that such a feature can be adopted to discriminate between pristine and altered images; furthermore, experiments witness that it can also be combined with visual data to provide a certain improvement in terms of detection accuracy.

The rising popularity of deep learning (DL) methods and techniques has invigorated interest in the topic of SE4DL, the application of software engineering (SE) practices on deep learning software. Despite the novel engineering challenges brought on by the data-driven and non-deterministic paradigm of DL software, little work has been invested into developing AI-targeted SE tools. On the other hand, tools tackling more general engineering issues in DL are actively used and referred to under the umbrella term of ``MLOps tools''. Furthermore, the available literature supports the utility of conventional SE tooling in DL software development. Building upon previous MSR research on tool usage in open-source software works, we identify conventional and MLOps tools adopted in popular applied DL projects that use Python as the main programming language. About 70% of the GitHub repositories mined contained at least one conventional SE tool. Software configuration management tools are the most adopted, while the opposite applies to maintenance tools. Substantially fewer MLOps tools were in use, with only 9 tools out of a sample of 80 used in at least one repository. The majority of them were open-source rather than proprietary. One of these tools, TensorBoard, was found to be adopted in about half of the repositories in our study. Consequently, the use of conventional SE tooling demonstrates its relevance to DL software. Further research is recommended on the adoption of MLOps tooling by open-source projects, focusing on the relevance of particular tool types, the development of required tools, as well as ways to promote the use of already available tools.

For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.

This paper compares different pre-trained and fine-tuned large language models (LLMs) for hate speech detection. Our research underscores challenges in LLMs' cross-domain validity and overfitting risks. Through evaluations, we highlight the need for fine-tuned models that grasp the nuances of hate speech through greater label heterogeneity. We conclude with a vision for the future of hate speech detection, emphasizing cross-domain generalizability and appropriate benchmarking practices.

Retrieving answers in a quick and low cost manner without hallucinations from a combination of structured and unstructured data using Language models is a major hurdle. This is what prevents employment of Language models in knowledge retrieval automation. This becomes accentuated when one wants to integrate a speech interface on top of a text based knowledge retrieval system. Besides, for commercial search and chat-bot applications, complete reliance on commercial large language models (LLMs) like GPT 3.5 etc. can be very costly. In the present study, the authors have addressed the aforementioned problem by first developing a keyword based search framework which augments discovery of the context from the document to be provided to the LLM. The keywords in turn are generated by a relatively smaller LLM and cached for comparison with keywords generated by the same smaller LLM against the query raised. This significantly reduces time and cost to find the context within documents. Once the context is set, a larger LLM uses that to provide answers based on a prompt tailored for Q\&A. This research work demonstrates that use of keywords in context identification reduces the overall inference time and cost of information retrieval. Given this reduction in inference time and cost with the keyword augmented retrieval framework, a speech based interface for user input and response readout was integrated. This allowed a seamless interaction with the language model.

We introduce JAX FDM, a differentiable solver to design mechanically efficient shapes for 3D structures conditioned on target architectural, fabrication and structural properties. Examples of such structures are domes, cable nets and towers. JAX FDM solves these inverse form-finding problems by combining the force density method, differentiable sparsity and gradient-based optimization. Our solver can be paired with other libraries in the JAX ecosystem to facilitate the integration of form-finding simulations with neural networks. We showcase the features of JAX FDM with two design examples. JAX FDM is available as an open-source library at //github.com/arpastrana/jax_fdm.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

To check the accuracy of Bayesian computations, it is common to use rank-based simulation-based calibration (SBC). However, SBC has drawbacks: The test statistic is somewhat ad-hoc, interactions are difficult to examine, multiple testing is a challenge, and the resulting p-value is not a divergence metric. We propose to replace the marginal rank test with a flexible classification approach that learns test statistics from data. This measure typically has a higher statistical power than the SBC rank test and returns an interpretable divergence measure of miscalibration, computed from classification accuracy. This approach can be used with different data generating processes to address likelihood-free inference or traditional inference methods like Markov chain Monte Carlo or variational inference. We illustrate an automated implementation using neural networks and statistically-inspired features, and validate the method with numerical and real data experiments.

The processing and analysis of computed tomography (CT) imaging is important for both basic scientific development and clinical applications. In AutoCT, we provide a comprehensive pipeline that integrates an end-to-end automatic preprocessing, registration, segmentation, and quantitative analysis of 3D CT scans. The engineered pipeline enables atlas-based CT segmentation and quantification leveraging diffeomorphic transformations through efficient forward and inverse mappings. The extracted localized features from the deformation field allow for downstream statistical learning that may facilitate medical diagnostics. On a lightweight and portable software platform, AutoCT provides a new toolkit for the CT imaging community to underpin the deployment of artificial intelligence-driven applications.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司